The cytoskeleton-a composite network of biopolymers, molecular motors, and associated binding proteins-is a paradigmatic example of active matter. Particle transport through the cytoskeleton can range from anomalous and heterogeneous subdiffusion to superdiffusion and advection. Yet, recapitulating and understanding these properties-ubiquitous to the cytoskeleton and other out-of-equilibrium soft matter systems-remains challenging.
View Article and Find Full Text PDFPancreatic ductal adenocarcinoma (PDA) is a lethal malignancy with a complex microenvironment. Dichotomous tumour-promoting and -restrictive roles have been ascribed to the tumour microenvironment, however the effects of individual stromal subsets remain incompletely characterised. Here, we describe how heterocellular Oncostatin M (OSM) - Oncostatin M Receptor (OSMR) signalling reprograms fibroblasts, regulates tumour growth and metastasis.
View Article and Find Full Text PDFExperimental in vitro models that capture pathophysiological characteristics of human tumours are essential for basic and translational cancer biology. Here, we describe a fully synthetic hydrogel extracellular matrix designed to elicit key phenotypic traits of the pancreatic environment in culture. To enable the growth of normal and cancerous pancreatic organoids from genetically engineered murine models and human patients, essential adhesive cues were empirically defined and replicated in the hydrogel scaffold, revealing a functional role of laminin-integrin α/α signalling in establishment and survival of pancreatic organoids.
View Article and Find Full Text PDFDocetaxel and cabazitaxel are taxane chemotherapy treatments for metastatic castration-resistant prostate cancer (CRPC). However, therapeutic resistance remains a major issue. MicroRNAs are short non-coding RNAs that can silence multiple genes, regulating several signalling pathways simultaneously.
View Article and Find Full Text PDFBackground: Docetaxel, the standard chemotherapy for metastatic castration-resistant prostate cancer (CRPC) also enhances the survival of patients with metastatic castration-sensitive prostate cancer (CSPC) when combined with androgen-deprivation therapy. Focal Adhesion Kinase (FAK) activation is a mediator of docetaxel resistance in prostate cancer cells. The aim of this study was to investigate the effect of the second generation FAK inhibitor VS-6063 on docetaxel efficacy in pre-clinical CRPC and CSPC models.
View Article and Find Full Text PDFFocal adhesion kinase (FAK) is a key regulator of growth factor receptor- and integrin-mediated signals, governing fundamental processes in normal and cancer cells through its kinase activity and scaffolding function. Increased FAK expression and activity occurs in primary and metastatic cancers of many tissue origins, and is often associated with poor clinical outcome, highlighting FAK as a potential determinant of tumor development and metastasis. Indeed, data from cell culture and animal models of cancer provide strong lines of evidence that FAK promotes malignancy by regulating tumorigenic and metastatic potential through highly-coordinated signaling networks that orchestrate a diverse range of cellular processes, such as cell survival, proliferation, migration, invasion, epithelial-mesenchymal transition, angiogenesis and regulation of cancer stem cell activities.
View Article and Find Full Text PDFDocetaxel remains the standard-of-care for men diagnosed with metastatic castrate-resistant prostate cancer (CRPC). However, only approximately 50% of patients benefit from treatment and all develop docetaxel-resistant disease. Here, we characterize global perturbations in tyrosine kinase signaling associated with docetaxel resistance and thereby develop a potential therapeutic strategy to reverse this phenotype.
View Article and Find Full Text PDFDocetaxel chemotherapy improves symptoms and survival in men with metastatic hormone-refractory prostate cancer (HRPC). However, approximately 50% of patients do not respond to Docetaxel and are exposed to significant toxicity without direct benefit. This study aimed to identify novel therapeutic targets and predictive biomarkers of Docetaxel resistance in HRPC.
View Article and Find Full Text PDF