Publications by authors named "Brian Walenz"

Robertsonian chromosomes are a type of variant chromosome found commonly in nature. Present in one in 800 humans, these chromosomes can underlie infertility, trisomies, and increased cancer incidence. Recognized cytogenetically for more than a century, their origins have remained mysterious.

View Article and Find Full Text PDF

The human Y chromosome has been notoriously difficult to sequence and assemble because of its complex repeat structure that includes long palindromes, tandem repeats and segmental duplications. As a result, more than half of the Y chromosome is missing from the GRCh38 reference sequence and it remains the last human chromosome to be finished. Here, the Telomere-to-Telomere (T2T) consortium presents the complete 62,460,029-base-pair sequence of a human Y chromosome from the HG002 genome (T2T-Y) that corrects multiple errors in GRCh38-Y and adds over 30 million base pairs of sequence to the reference, showing the complete ampliconic structures of gene families TSPY, DAZ and RBMY; 41 additional protein-coding genes, mostly from the TSPY family; and an alternating pattern of human satellite 1 and 3 blocks in the heterochromatic Yq12 region.

View Article and Find Full Text PDF

Here the Human Pangenome Reference Consortium presents a first draft of the human pangenome reference. The pangenome contains 47 phased, diploid assemblies from a cohort of genetically diverse individuals. These assemblies cover more than 99% of the expected sequence in each genome and are more than 99% accurate at the structural and base pair levels.

View Article and Find Full Text PDF

The Telomere-to-Telomere consortium recently assembled the first truly complete sequence of a human genome. To resolve the most complex repeats, this project relied on manual integration of ultra-long Oxford Nanopore sequencing reads with a high-resolution assembly graph built from long, accurate PacBio high-fidelity reads. We have improved and automated this strategy in Verkko, an iterative, graph-based pipeline for assembling complete, diploid genomes.

View Article and Find Full Text PDF

Variant calling has been widely used for genotyping and for improving the consensus accuracy of long-read assemblies. Variant calls are commonly hard-filtered with user-defined cutoffs. However, it is impossible to define a single set of optimal cutoffs, as the calls heavily depend on the quality of the reads, the variant caller of choice and the quality of the unpolished assembly.

View Article and Find Full Text PDF

Since its initial release in 2000, the human reference genome has covered only the euchromatic fraction of the genome, leaving important heterochromatic regions unfinished. Addressing the remaining 8% of the genome, the Telomere-to-Telomere (T2T) Consortium presents a complete 3.055 billion-base pair sequence of a human genome, T2T-CHM13, that includes gapless assemblies for all chromosomes except Y, corrects errors in the prior references, and introduces nearly 200 million base pairs of sequence containing 1956 gene predictions, 99 of which are predicted to be protein coding.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists need good reference genomes to study biology, diseases, and protect wildlife, but there are only a few for non-microbial species.
  • The Genome 10K (G10K) group worked for five years to improve the way they create these high-quality genomes and gathered information from 16 different animal species.
  • Their work showed that special long-read technology improves genome quality, fixed errors in old genome sequences, and discovered new things about genes and chromosomes, leading to a new project to create complete genomes for about 70,000 vertebrate species.
View Article and Find Full Text PDF

The rDNA clusters and flanking sequences on human chromosomes 13, 14, 15, 21 and 22 represent large gaps in the current genomic assembly. The organization and the degree of divergence of the human rDNA units within an individual nucleolar organizer region (NOR) are only partially known. To address this lacuna, we previously applied transformation-associated recombination (TAR) cloning to isolate individual rDNA units from chromosome 21.

View Article and Find Full Text PDF

Recent long-read assemblies often exceed the quality and completeness of available reference genomes, making validation challenging. Here we present Merqury, a novel tool for reference-free assembly evaluation based on efficient k-mer set operations. By comparing k-mers in a de novo assembly to those found in unassembled high-accuracy reads, Merqury estimates base-level accuracy and completeness.

View Article and Find Full Text PDF

Complete and accurate genome assemblies form the basis of most downstream genomic analyses and are of critical importance. Recent genome assembly projects have relied on a combination of noisy long-read sequencing and accurate short-read sequencing, with the former offering greater assembly continuity and the latter providing higher consensus accuracy. The recently introduced Pacific Biosciences (PacBio) HiFi sequencing technology bridges this divide by delivering long reads (>10 kbp) with high per-base accuracy (>99.

View Article and Find Full Text PDF

Motivation: In this era of exponential data growth, minimizer sampling has become a standard algorithmic technique for rapid genome sequence comparison. This technique yields a sub-linear representation of sequences, enabling their comparison in reduced space and time. A key property of the minimizer technique is that if two sequences share a substring of a specified length, then they can be guaranteed to have a matching minimizer.

View Article and Find Full Text PDF
Article Synopsis
  • Advances in long-read data and scaffolding technologies have led to improved reference-quality genome assemblies, particularly for complex genomes like maize.
  • Critical assessments of sequence depth and read length are essential for effective resource allocation when generating these assemblies.
  • The study highlights that higher depth and longer subread lengths significantly enhance assembly quality, with high-quality optical maps further improving the contiguity of fragmented assemblies.
View Article and Find Full Text PDF

Long-read sequencing and novel long-range assays have revolutionized de novo genome assembly by automating the reconstruction of reference-quality genomes. In particular, Hi-C sequencing is becoming an economical method for generating chromosome-scale scaffolds. Despite its increasing popularity, there are limited open-source tools available.

View Article and Find Full Text PDF

Recent advances in genomic sequencing technology and computational assembly methods have allowed scientists to improve reference genome assemblies in terms of contiguity and composition. EquCab2, a reference genome for the domestic horse, was released in 2007. Although of equal or better quality compared to other first-generation Sanger assemblies, it had many of the shortcomings common to them.

View Article and Find Full Text PDF

Complex allelic variation hampers the assembly of haplotype-resolved sequences from diploid genomes. We developed trio binning, an approach that simplifies haplotype assembly by resolving allelic variation before assembly. In contrast with prior approaches, the effectiveness of our method improved with increasing heterozygosity.

View Article and Find Full Text PDF

Background: Long-read and short-read sequencing technologies offer competing advantages for eukaryotic genome sequencing projects. Combinations of both may be appropriate for surveys of within-species genomic variation.

Methods: We developed a hybrid assembly pipeline called "Alpaca" that can operate on 20X long-read coverage plus about 50X short-insert and 50X long-insert short-read coverage.

View Article and Find Full Text PDF

Long-read single-molecule sequencing has revolutionized de novo genome assembly and enabled the automated reconstruction of reference-quality genomes. However, given the relatively high error rates of such technologies, efficient and accurate assembly of large repeats and closely related haplotypes remains challenging. We address these issues with Canu, a successor of Celera Assembler that is specifically designed for noisy single-molecule sequences.

View Article and Find Full Text PDF
Article Synopsis
  • * Recent improvements in sequencing methods, including long-read technologies and better software, allowed for a significantly improved genome assembly that has fifty times more sequence contiguity and fifteen times fewer gaps.
  • * This new assembly highlights the presence of a high density of tandem repeats, with a notable portion being heterozygous, suggesting substantial genetic variation that could be important for the evolution of Atlantic cod populations.
View Article and Find Full Text PDF
Article Synopsis
  • The common ancestor of salmonids experienced a whole-genome duplication 80 million years ago (Ss4R), allowing for studies on how duplicated genomes evolve across 70 species.
  • The high-quality genome assembly of Atlantic salmon reveals that significant genomic reorganizations and transposon activity played key roles in the genome's rediploidization after Ss4R.
  • Unexpectedly, the research shows more instances of neofunctionalization in duplicate genes compared to subfunctionalization, and the retained duplicates from an earlier genome duplication did not influence retention after Ss4R, making the Atlantic salmon genome a valuable reference for studying other salmonid species.
View Article and Find Full Text PDF

Ticks transmit more pathogens to humans and animals than any other arthropod. We describe the 2.1 Gbp nuclear genome of the tick, Ixodes scapularis (Say), which vectors pathogens that cause Lyme disease, human granulocytic anaplasmosis, babesiosis and other diseases.

View Article and Find Full Text PDF

Anopheles darlingi is the principal neotropical malaria vector, responsible for more than a million cases of malaria per year on the American continent. Anopheles darlingi diverged from the African and Asian malaria vectors ∼100 million years ago (mya) and successfully adapted to the New World environment. Here we present an annotated reference A.

View Article and Find Full Text PDF

Single-molecule sequencing instruments can generate multikilobase sequences with the potential to greatly improve genome and transcriptome assembly. However, the error rates of single-molecule reads are high, which has limited their use thus far to resequencing bacteria. To address this limitation, we introduce a correction algorithm and assembly strategy that uses short, high-fidelity sequences to correct the error in single-molecule sequences.

View Article and Find Full Text PDF

Two African apes are the closest living relatives of humans: the chimpanzee (Pan troglodytes) and the bonobo (Pan paniscus). Although they are similar in many respects, bonobos and chimpanzees differ strikingly in key social and sexual behaviours, and for some of these traits they show more similarity with humans than with each other. Here we report the sequencing and assembly of the bonobo genome to study its evolutionary relationship with the chimpanzee and human genomes.

View Article and Find Full Text PDF

We present the draft genome for the Rickettsia endosymbiont of Ixodes scapularis (REIS), a symbiont of the deer tick vector of Lyme disease in North America. Among Rickettsia species (Alphaproteobacteria: Rickettsiales), REIS has the largest genome sequenced to date (>2 Mb) and contains 2,309 genes across the chromosome and four plasmids (pREIS1 to pREIS4). The most remarkable finding within the REIS genome is the extraordinary proliferation of mobile genetic elements (MGEs), which contributes to a limited synteny with other Rickettsia genomes.

View Article and Find Full Text PDF