Publications by authors named "Brian Wadzinski"

The Ebola filovirus (EBOV) poses a serious threat to global health and national security. Nanobodies, a type of single-domain antibody, have demonstrated promising therapeutic potential. We identified two anti-EBOV nanobodies, Nanosota-EB1 and Nanosota-EB2, which specifically target the EBOV glycoprotein (GP).

View Article and Find Full Text PDF

Omicron subvariants of SARS-CoV-2 continue to pose a significant global health threat. Nanobodies, single-domain antibodies derived from camelids, are promising therapeutic tools against pandemic viruses due to their favorable properties. In this study, we identified a novel nanobody, Nanosota-9, which demonstrates high potency against a wide range of Omicron subvariants both in vitro and in a mouse model.

View Article and Find Full Text PDF
Article Synopsis
  • - Cas9 and its fusions are powerful tools for genetic editing, with modifications enabling single base editing and targeted genome manipulation using catalytically dead variants.
  • - A panel of nanobodies was created, sourced from an alpaca, targeting specific regions (epitopes) on Streptococcus pyogenes Cas9, capable of recognizing both Cas9 and RNA-bound Cas9 without hindering its DNA cleavage function.
  • - The study provides detailed sequences of these nanobodies and accompanying biochemical data, allowing other scientists to utilize these reagents in their research.
View Article and Find Full Text PDF
Article Synopsis
  • Antiviral antibody therapy faces challenges due to the rapid evolution of viruses, making it crucial to find flexible solutions.
  • Researchers have developed a method using nanobodies from camelids that can be quickly modified to target new viral mutations, focusing on areas where viruses change.
  • As a successful example, they adapted a specific nanobody to effectively combat recent Omicron subvariants in under two weeks, highlighting the potential for fast-tracking drug development to match viral evolution.
View Article and Find Full Text PDF

The classical amyloid cascade hypothesis postulates that the aggregation of amyloid plaques and the accumulation of intracellular hyperphosphorylated Tau tangles, together, lead to profound neuronal death. However, emerging research has demonstrated that soluble amyloid-β oligomers (SAβOs) accumulate early, prior to amyloid plaque formation. SAβOs induce memory impairment and disrupt cognitive function independent of amyloid-β plaques, and even in the absence of plaque formation.

View Article and Find Full Text PDF

Liprin-α1 is a widely expressed scaffolding protein responsible for regulating cellular processes such as focal adhesion, cell motility, and synaptic transmission. Liprin-α1 interacts with many proteins including ELKS, GIT1, liprin-β, and LAR-family receptor tyrosine protein phosphatase. Through these protein-protein interactions, liprin-α1 assembles large higher-order molecular complexes; however, the regulation of this complex assembly/disassembly is unknown.

View Article and Find Full Text PDF

Precise regulation of protein phosphorylation is critical for many cellular processes, and dysfunction in this process has been linked to various neurological disorders and diseases. Protein phosphatase 1 (PP1) is a ubiquitously expressed serine/threonine phosphatase with three major isoforms, (α, β, γ) and hundreds of known substrates. Previously, we reported that PP1α and PP1γ are essential for the known role of PP1 in synaptic physiology and learning/memory, while PP1β displayed a surprising opposing function.

View Article and Find Full Text PDF

The classical amyloid cascade hypothesis postulates that the aggregation of amyloid plaques and the accumulation of intracellular hyperphosphorylated Tau tangles, together, lead to profound neuronal death. However, emerging research has demonstrated that soluble amyloid-β oligomers (SAβOs) accumulate early, prior to amyloid plaque formation. SAβOs induce memory impairment and disrupt cognitive function independent of amyloid-β plaques, and even in the absence of plaque formation.

View Article and Find Full Text PDF

Intrinsically disordered regions (IDR) and short linear motifs (SLiMs) play pivotal roles in the intricate signaling networks governed by phosphatases and kinases. B56δ (encoded by ) is a regulatory subunit of protein phosphatase 2A (PP2A) with long IDRs that harbor a substrate-mimicking SLiM and multiple phosphorylation sites. De novo missense mutations in cause intellectual disabilities (ID), macrocephaly, Parkinsonism, and a broad range of neurological symptoms.

View Article and Find Full Text PDF

Clostridioides difficile is a leading cause of antibiotic-associated diarrhea and nosocomial infection in the United States. The symptoms of C. difficile infection (CDI) are associated with the production of two homologous protein toxins, TcdA and TcdB.

View Article and Find Full Text PDF

The COVID-19 pandemic exposed limitations of conventional antibodies as therapeutics, including high cost, limited potency, ineffectiveness against new viral variants, and primary reliance on injection-only delivery. Nanobodies are single-domain antibodies with therapeutic potentials. We discovered three anti-SARS-CoV-2 nanobodies, named Nanosota-2, -3, and -4, from an immunized alpaca.

View Article and Find Full Text PDF

An increasing number of mutations associated with devastating human diseases are diagnosed by whole-genome/exon sequencing. Recurrent missense mutations have been discovered in B56δ (encoded by ), a regulatory subunit of protein phosphatase 2A (PP2A), that cause intellectual disabilities (ID), macrocephaly, Parkinsonism, and a broad range of neurological symptoms. Single-particle cryo-EM structures show that the PP2A-B56δ holoenzyme possesses closed latent and open active forms.

View Article and Find Full Text PDF

The current study examined the roles of Alpha4, a non-canonical subunit of protein phosphatase 2A, in the regulation of acute (insulin secretion) and chronic (cell dysfunction) effects of glucose in pancreatic beta cells. Alpha4 is expressed in human islets, rat islets and INS-1832/13 cells. Incubation of INS-1832/13 cells and rat islets with high glucose (HG) significantly increased the expression of Alpha4.

View Article and Find Full Text PDF

Protein phosphatase 2A (PP2A) is a major phospho-Ser/Thr phosphatase and a key regulator of cellular signal transduction pathways. While PP2A dysfunction has been linked to human cancer and neurodegenerative disorders such as Alzheimer's disease (AD), PP2A regulation remains relatively poorly understood. It has been reported that the PP2A catalytic subunit (PP2Ac) is inactivated by a single phosphorylation at the Tyr307 residue by tyrosine kinases such as v-Src.

View Article and Find Full Text PDF

Ergothioneine (ERGO) is a unique antioxidant and a rare amino acid available in fungi and various bacteria but not in higher plants or animals. Substantial research data indicate that ERGO is a physiological antioxidant cytoprotectant. Different from other antioxidants that need to breach the blood-brain barrier to enter the brain parenchyma, a specialized transporter called OCTN1 has been identified for transporting ERGO to the brain.

View Article and Find Full Text PDF

Protein phosphatase 2A (PP2A) is an important regulator of signal transduction pathways and a tumor suppressor. Phosphorylation of the PP2A catalytic subunit (PP2A) at tyrosine 307 has been claimed to inactivate PP2A and was examined in more than 180 studies using commercial antibodies, but this modification was never identified using mass spectrometry. Here we show that the most cited pTyr monoclonal antibodies, E155 and F-8, are not specific for phosphorylated Tyr but instead are hampered by PP2A methylation at leucine 309 or phosphorylation at threonine 304.

View Article and Find Full Text PDF

Cardiac physiology and hypertrophy are regulated by the phosphorylation status of many proteins, which is partly controlled by a poorly defined type 2A protein phosphatase-alpha4 intracellular signalling axis. Quantitative PCR analysis revealed that mRNA levels of the type 2A catalytic subunits were differentially expressed in H9c2 cardiomyocytes (PP2ACβ > PP2ACα > PP4C > PP6C), NRVM (PP2ACβ > PP2ACα = PP4C = PP6C), and adult rat ventricular myocytes (PP2ACα > PP2ACβ > PP6C > PP4C). Western analysis confirmed that all type 2A catalytic subunits were expressed in H9c2 cardiomyocytes; however, PP4C protein was absent in adult myocytes and only detectable following 26S proteasome inhibition.

View Article and Find Full Text PDF

Alpha4 is a non-canonical regulatory subunit of Type 2A protein phosphatases that interacts directly with the phosphatase catalytic subunits (PP2Ac, PP4c, and PP6c) and is upregulated in a variety of cancers. Alpha4 modulates phosphatase expression levels and activity, but the molecular mechanism of this regulation is unclear, and the extent to which the various Type 2A catalytic subunits associate with Alpha4 is also unknown. To determine the relative fractions of the Type 2A catalytic subunits associated with Alpha4, we conducted Alpha4 immunodepletion experiments in HEK293T cells and found that a significant fraction of total PP6c is associated with Alpha4, whereas a minimal fraction of total PP2Ac is associated with Alpha4.

View Article and Find Full Text PDF

Protein phosphatase 2A (PP2A) is a ubiquitous phospho-serine/threonine phosphatase that controls many diverse cellular functions. The predominant form of PP2A is a heterotrimeric holoenzyme consisting of a scaffolding A subunit, a variable regulatory B subunit, and a catalytic C subunit. The C subunit also associates with other interacting partners, such as α4, to form non-canonical PP2A complexes.

View Article and Find Full Text PDF

During M phase, Endosulfine (Endos) family proteins are phosphorylated by Greatwall kinase (Gwl), and the resultant pEndos inhibits the phosphatase PP2A-B55, which would otherwise prematurely reverse many CDK-driven phosphorylations. We show here that PP2A-B55 is the enzyme responsible for dephosphorylating pEndos during M phase exit. The kinetic parameters for PP2A-B55's action on pEndos are orders of magnitude lower than those for CDK-phosphorylated substrates, suggesting a simple model for PP2A-B55 regulation that we call inhibition by unfair competition.

View Article and Find Full Text PDF

Serine/threonine protein phosphatase 5 (PP5, PPP5C) is known to interact with the chaperonin heat shock protein 90 (HSP90) and is involved in the regulation of multiple cellular signaling cascades that control diverse cellular processes, such as cell growth, differentiation, proliferation, motility, and apoptosis. Here, we identify PP5 in stable complexes with extracellular signal-regulated kinases (ERKs). Studies using mutant proteins reveal that the formation of PP5·ERK1 and PP5·ERK2 complexes partially depends on HSP90 binding to PP5 but does not require PP5 or ERK1/2 activity.

View Article and Find Full Text PDF

Existing evidence implicates regulatory roles for protein phosphatase 2A (PP2A) in a variety of cellular functions, including cytoskeletal remodeling, hormone secretion, and apoptosis. We report here activation of PP2A in normal rat islets and insulin-secreting INS-1 832/13 cells under the duress of hyperglycemic (HG) conditions. Small interfering RNA-mediated knockdown of the catalytic subunit of PP2A (PP2Ac) markedly attenuated glucose-induced activation of PP2A.

View Article and Find Full Text PDF

Protein phosphorylation and dephosphorylation are both important for multiple steps in the splicing pathway. Members of the PP1 and PP2A subfamilies of phospho-serine/threonine phosphatases play essential but redundant roles in the second step of the splicing reaction. PP6, a member of the PP2A subfamily, is the mammalian homolog of yeast Sit4p and ppe1, which are involved in cell cycle regulation; however, the involvement of PP6 in the splicing pathway remains unclear.

View Article and Find Full Text PDF