Publications by authors named "Brian W Leblanc"

Molnupiravir (MK-4482, EIDD-2801) is a promising broad-spectrum experimental antiviral developed by Merck & Co. It is a nucleoside analogue prodrug that undergoes rapid conversion into nucleoside triphosphate (NTP) by intracellular metabolic processes. NTP inhibits viral polymerase by acting as an alternative substrate.

View Article and Find Full Text PDF

The rapid innate immune response to respiratory infection is essential to prevent the systemic dissemination of pathogens. This chapter outlines an experimental mouse model of respiratory infection by gram-negative Pseudomonas aeruginosa and analyses of leukocyte trafficking in the lungs. The reader will learn two methods to induce respiratory infection in mice that differ in whether the initial bolus is targeted within a specific lobe of the lung.

View Article and Find Full Text PDF

Mammalian cells do not produce chitin, an insoluble polymer of N-acetyl-D-glucosamine (GlcNAc), although chitin is a structural component of the cell wall of pathogenic microorganisms such as Candida albicans. Mammalian cells, including cells of the innate immune system elaborate chitinases, including chitotriosidase (Chit1), which may play a role in the anti-fungal immune response. In the current study, using knockout mice, we determined the role of Chit1 against systemic candidiasis.

View Article and Find Full Text PDF

Talc and titanium dioxide are naturally occurring water-insoluble mined products usually available in the form of particulate matter. This study was prompted by epidemiological observations suggesting that perineal use of talc powder is associated with increased risk of ovarian cancer, particularly in a milieu with higher estrogen. We aimed to test the effects of talc vs.

View Article and Find Full Text PDF

We present a multimodal method combining quantitative electroencephalography (EEG), behavior and pharmacology for pre-clinical screening of analgesic efficacy in vivo. The method consists of an objective and non-invasive approach for realtime assessment of spontaneous nociceptive states based on EEG recordings of theta power over primary somatosensory cortex in awake rats. Three drugs were chosen: (1) pregabalin, a CNS-acting calcium channel inhibitor; (2) EMA 401, a PNS-acting angiotensin II type 2 receptor inhibitor; and (3) minocycline, a CNS-acting glial inhibitor.

View Article and Find Full Text PDF

Paresthesia, a common feature of epidural spinal cord stimulation (SCS) for pain management, presents a challenge to the double-blind study design. Although sub-paresthesia SCS has been shown to be effective in alleviating pain, empirical criteria for sub-paresthesia SCS have not been established and its basic mechanisms of action at supraspinal levels are unknown. We tested our hypothesis that sub-paresthesia SCS attenuates behavioral signs of neuropathic pain in a rat model, and modulates pain-related theta (4-8 Hz) power of the electroencephalogram (EEG), a previously validated correlate of spontaneous pain in rodent models.

View Article and Find Full Text PDF

Background: Multi-organ failure occurs during critical illness and is mediated in part by destructive neutrophil-to-endothelial interactions. The β2 integrin receptor, CR3 (complement receptor 3; Mac-1; CD11b/CD18), which binds endothelial intercellular adhesion molecule-1 (ICAM-1), plays a key role in promoting the adhesion of activated neutrophils to inflamed endothelia which, when prolonged and excessive, can cause vascular damage. Leukadherin-1 (LA-1) is a small molecule allosteric activator of CR3 and has been shown to promote adhesion of blood neutrophils to inflamed endothelium and restrict tissue infiltration.

View Article and Find Full Text PDF

We tested the relation between pain behavior, theta (4-8 Hz) oscillations in somatosensory cortex and burst firing in thalamic neurons in vivo. Optically-induced thalamic bursts attenuated cortical theta and mechanical allodynia. It is proposed that thalamic bursts are an adaptive response to pain that de-synchronizes cortical theta and decreases sensory salience.

View Article and Find Full Text PDF

Recent studies in our laboratory showed that cortical theta oscillations correlate with pain in rodent models. In this study, we sought to validate our pre-clinical data using EEG recordings in humans during immersion of the hand in ice cold water, a moderately noxious stimulus. Power spectral analysis shows that an increase in pain score is associated with an increase in power amplitude within a frequency range of 6-7Hz at the frontal (Fz) electrode.

View Article and Find Full Text PDF

Pain modulates rhythmic neuronal activity recorded by Electroencephalography (EEG) in humans. Our laboratory previously showed that rat models of acute and neuropathic pain manifest increased power in primary somatosensory cortex (S1) recorded by electrocorticography (ECoG). In this study, we hypothesized that pain increases EEG power and corticocortical coherence in different rat models of pain, whereas treatments with clinically effective analgesics reverse these changes.

View Article and Find Full Text PDF

Oscillations are fundamental to communication between neuronal ensembles. We previously reported that pain in awake rats enhances synchrony in primary somatosensory cortex (S1) and attenuates coherence between S1 and ventral posterolateral (VPL) thalamus. Here, we asked whether similar changes occur in anesthetized rats and whether pain modulates phase-amplitude coupling between VPL and S1.

View Article and Find Full Text PDF

Thalamocortical oscillations are critical for sensory perception. Although pain is known to disrupt synchrony in thalamocortical oscillations, evidence in the literature is controversial. Thalamocortical coherence has been reported to be increased in patients with neurogenic pain but decreased in a rat model of central pain.

View Article and Find Full Text PDF

Chronic neuropathic pain is associated with long-term changes at multiple levels of the neuroaxis, including in the brain, where electrical stimulation has been used to manage severe pain conditions. However, the clinical outcome of deep brain stimulation is often mixed, and the mechanisms are poorly understood. By means of electrophysiologic methods, we sought to characterize the changes in neuronal activity in the ventral posterolateral nucleus of the thalamus (VPL) in a rat model of peripheral neuropathic pain, and to reverse these changes with low-voltage, high-frequency stimulation (HFS) in the VPL.

View Article and Find Full Text PDF

We hypothesized that microglia in the ventral posterolateral (VPL) nucleus of the thalamus are reactive following peripheral nerve injury, and that inhibition of microglia by minocycline injection in the VPL attenuates thermal hyperalgesia. Our results show increased expression of OX-42 co-localized with phosphorylated p38MAPK (P-p38) in the VPL seven days after chronic constriction injury (CCI) of the sciatic nerve. However, astrocytic GFAP expression in the VPL is unchanged 7 and 14 days after CCI.

View Article and Find Full Text PDF

The beta-glucans are long-chain polymers of glucose in beta-(1,3)(1,6) linkages, which comprise the fungal cell wall and stimulate cells of the innate immune system. Previous in vitro studies have shown the ability of beta-glucan to increase the chemotactic capacity of human neutrophils. The current study examined an in vivo correlate of that observation by testing the hypothesis that systemic beta-glucan treatment would result in enhanced migration of neutrophils into a site of inflammation and improve antimicrobial function.

View Article and Find Full Text PDF

Prior studies have shown that hemorrhage (Hem) can serve as a priming stimulus for acute lung injury (ALI) triggered by subsequent septic challenge (cecal ligation and puncture, CLP). Furthermore, we have reported that in vivo antibody neutralization of the chemokines, macrophage inflammatory chemokine-2 (MIP-2) and keratinocyte-derived chemokine (KC), immediately after Hem appears to differentially effect the onset of ALI. However, although we hypothesize that this is due to divergent effects of MIP-2 and KC on Hem-induced neutrophil (PMN) priming, this has not been tested.

View Article and Find Full Text PDF

Acute lung injury (ALI) leading to respiratory distress is a common sequela of shock/trauma, however, modeling this process in mice with a single shock or septic event is inconsistent. One explanation is that hemorrhage is often just a "priming insult," thus, secondary stimuli may be required to "trigger" ALI. To test this we carried out studies in which we assessed the capacity of hemorrhage alone or hemorrhage followed by septic challenge (CLP) to induce ALI.

View Article and Find Full Text PDF