Field experiments were performed to evaluate the deposition velocity of tritium oxide within a forest environment at the Savannah River Site near Aiken, SC. Field releases were designed to guide selection of deposition velocity values for use in safety-basis modeling. Six releases of deuterium oxide were conducted in 2020 and 2021 with corresponding air samples during and following each release.
View Article and Find Full Text PDFDuring the afternoon of 30 January 2022, the Savannah River Site experienced unusual temperature conditions leading to a fumigation event that triggered safety alarms and caused considerable confusion about the cause of the event. Normally, it is assumed that fumigation events occur early in the day once surface heating has begun. While most fumigation events are related to the breakup of a nocturnal inversion, this event was related to synoptic atmospheric conditions, which provided a more unique scenario that led to the fumigation event.
View Article and Find Full Text PDFJ Environ Radioact
September 2020
Tritium processing facilities may release tritium oxide (HTO) to the atmosphere which poses potential health risks to exposed co-located workers and to offsite individuals. Most radiological consequence analyses determine HTO dose by applying Gaussian plume models to simulate the transport of HTO. Within these models, deposition velocity is used to assess the sum of all deposition processes acting on the plume.
View Article and Find Full Text PDFEnviron Sci Process Impacts
June 2019
The speciation of radioactive tritium (T) in a naturally-established subtropical loblolly pine forest that has been irrigated with highly-contaminated pond water for the last 20 years is reported. This irrigation project was created to limit the underground transport of a tritium-rich plume which also contains low levels of toxic organics, metals and radionuclides such as carbon-14 (14C) from a nearby low-level waste burial ground. The levels of tritiated water (HTO) in the wood cores were not influenced by recent irrigation activities.
View Article and Find Full Text PDFThe aim of this study is to comprehensively investigate radionuclide concentrations in surface soil and un-decayed vegetative litter along four stream systems (i.e. Fourmile Branch, Lower Three Runs, Pen Branch, and Steel Creek) at the Savannah River Site (SRS), Aiken, South Carolina.
View Article and Find Full Text PDFThe contaminated ground surface at Savannah River Site (SRS) is a result of the decades of work that has been performed maintaining the country's nuclear stockpile and performing research and development on nuclear materials. The volatilization of radionuclides during wildfire results in airborne particles that are dispersed within the smoke plume and may result in doses to downwind firefighters and the public. To better understand the risk that these smoke plumes present, we have characterized four regions at SRS in terms of their fuel characteristics and radiological contamination on the ground.
View Article and Find Full Text PDFComplex terrain creates small-scale circulations which affect pollen dispersion but may be missed by meteorological observing networks and coarse-grid meteorological models. On volcanic islands, these circulations result from differing rates of surface heating between land and sea as well as rugged terrain. We simulated the transport of bentgrass, ryegrass, and maize pollen from 30 sources within the agricultural regions of the Hawaiian island Kaua'i during climatological conditions spanning season conditions and the La Niña, El Niño, and neutral phases of the El Niño-Southern Oscillation.
View Article and Find Full Text PDF