1,4-Napththoquinones (NQs) are clinically relevant therapeutics that affect cell function through production of reactive oxygen species (ROS) and formation of adducts with regulatory protein thiols. Reactive sulfur species (RSS) are chemically and biologically similar to ROS and here we examine RSS production by NQ oxidation of hydrogen sulfide (H2S) using RSS-specific fluorophores, liquid chromatography-mass spectrometry, UV-Vis absorption spectrometry, oxygen-sensitive optodes, thiosulfate-specific nanoparticles, HPLC-monobromobimane derivatization, and ion chromatographic assays. We show that NQs, catalytically oxidize H2S to per- and polysulfides (H2Sn, n = 2−6), thiosulfate, sulfite and sulfate in reactions that consume oxygen and are accelerated by superoxide dismutase (SOD) and inhibited by catalase.
View Article and Find Full Text PDFWe provide an overview of diverse forms of youth participation, with a focus on youth participatory action research (YPAR) and its synergies with life course intervention research to promote healthier development for young people and across the life span. We analyze why YPAR matters for research, practice, and policies related to the systems and settings in which young people develop. We also illustrate how young people perform YPAR work to improve the developmental responsiveness and equity of school and health systems, including descriptions of an innovative youth-led health center in Rwanda and a long-standing and evolving integration of YPAR into public high schools in the United States.
View Article and Find Full Text PDFNutraceutical polyphenol catechins in green tea oxidize HS to polysulfides (PS) in buffer and in cells thereby conveying their cytoprotective effects. Here we measure HS oxidation in buffer and HEK293 cells by over-the-counter nutraceuticals, blueberry, bilberry and cranberry, and by polyphenols, cyanadin (Cya), quercetin (Que), rosmarinic acid (RA) and resveratrol (Res). HS and PS were measured with specific fluorophores, AzMc and SSP4 respectively, and thiosulfate (TS) production was measured in buffer using silver nanoparticles (AgNPs).
View Article and Find Full Text PDFMatcha and green tea catechins such as (-)-epicatechin (EC), (-)-epigallocatechin (EGC) and (-)-epigallocatechin gallate (EGCG) have long been studied for their antioxidant and health-promoting effects. Using specific fluorophores for HS (AzMC) and polysulfides (SSP4) as well as IC-MS and UPLC-MS/MS-based techniques we here show that popular Japanese and Chinese green teas and select catechins all catalytically oxidize hydrogen sulfide (HS) to polysulfides with the potency of EGC > EGCG >> EG. This reaction is accompanied by the formation of sulfite, thiosulfate and sulfate, consumes oxygen and is partially inhibited by the superoxide scavenger, tempol, and superoxide dismutase but not mannitol, trolox, DMPO, or the iron chelator, desferrioxamine.
View Article and Find Full Text PDFBackground: Pharmacological blockade of beta3-integrins inhibits neointimal lesion formation in nonmouse animal models of arterial injury. In contrast, beta3-integrin-deficient (beta3-/-) mice are not protected from neointimal lesion formation after arterial injury. We investigated this discrepancy in beta3-/- and wild-type (beta3+/+) mice using different models of injury.
View Article and Find Full Text PDFAlthough mice deficient in various genes are providing greater insight into the mechanisms of restenosis after angioplasty, there have been limitations with murine models not simulating human vascular disease. To develop a more clinically applicable model of primary atherosclerosis and restenosis following angioplasty of the primary lesion, we fed apolipoprotein E-deficient mice a Western diet and occluded the left common carotid artery for 2 days. Three weeks after flow was restored, the temporarily occluded carotids demonstrated atherosclerotic lesions containing foam cells, cholesterol clefts, necrotic cores, and fibrous capsules.
View Article and Find Full Text PDF