Publications by authors named "Brian Timmer"

Marine heatwaves threaten the persistence of kelp forests globally. However, the observed responses of kelp forests to these events have been highly variable on local scales. Here, we synthesize distribution data from an environmentally diverse region to examine spatial patterns of canopy kelp persistence through an unprecedented marine heatwave.

View Article and Find Full Text PDF

The outer coordination sphere of metalloenzyme often plays an important role in its high catalytic activity, however, this principle is rarely considered in the design of man-made molecular catalysts. Herein, four Ru-bda (bda=2,2'-bipyridine-6,6'-dicarboxylate) based molecular water oxidation catalysts with well-defined outer spheres are designed and synthesized. Experimental and theoretical studies showed that the hydrophobic environment around the Ru center could lead to thermodynamic stabilization of the high-valent intermediates and kinetic acceleration of the proton transfer process during catalytic water oxidation.

View Article and Find Full Text PDF

Two dipyridyl ligands were synthesized, where the pyridyl donor fragments were separated by an isophthalamide (1) or a dipicolinamide moiety (2). Both ligands formed [Pd2(Ligand)4][BF4]4 complexes in CD2Cl2 containing 5% dmso-d6. It was found that while [Pd2(1)4][BF4]4 readily binds to n-octyl glycosides and to nitrate anions, [Pd2(2)4][BF4]4 did not.

View Article and Find Full Text PDF

The hollow [PdL][BArF]2 complex 1 of a tetra-pyridyl (py) ligand (L) has a [Pd(py)4]2+ coordination environment. Addition of coordinating anions resulted in the formation of a neutral species with Pd(py)2(anion)2 coordination environment (12A). These species bind further to the coordinating anions in the order Cl- > N3- > Br- > I- > AcO- with Ka1 : 1 ≤ 414 M-1.

View Article and Find Full Text PDF

Galectins are a galactoside specific subclass of carbohydrate binding proteins (lectins) involved in various cellular activities, certain cancers, infections, inflammations, and many other biological processes. The molecular basis for the selectivity of galectins is well-documented and revolves around appropriate interaction complementarity: an aromatic residue for C-H⋅⋅⋅π interactions and polar residues for (charge assisted) hydrogen bonds with the axial hydroxyl group of a galactoside. However, no synthetic mimics are currently available.

View Article and Find Full Text PDF

O-O bond formation with Ru(bda)L -type catalysts is well-known to proceed through a bimolecular reaction pathway, limiting the potential application of these catalysts at low concentrations. Herein, we achieved high efficiencies with mononuclear catalysts, with TOFs of 460±32 s at high catalyst loading and 31±3 s at only 1 μM catalyst concentration, by simple structural considerations on the axial ligands. Kinetic and DFT studies show that introduction of an off-set in the interaction between the two catalytic units reduces the kinetic barrier of the second-order O-O bond formation, maintaining high catalytic activity even at low catalyst concentrations.

View Article and Find Full Text PDF

Mixing the liquids hexafluorobenzene () and 1,3,5-trimethylbenzene (mesitylene, ) results in a crystalline solid with a melting point of 34 °C. The solid consists of alternating π-π stacked pillars of both aromatics. This simple experiment can be used to visually demonstrate the existence and the effect of noncovalent intermolecular π-π stacking interactions.

View Article and Find Full Text PDF

Water provides an ideal source for the production of protons and electrons required for generation of renewable fuels. Among the most-prominent electrocatalysts capable of water oxidation at low overpotentials are -type catalysts. Although many studies were dedicated to the investigation of the influence of structural variations, the true implication of the bda backbone on catalysis remains mostly unclarified.

View Article and Find Full Text PDF

Tuning the local environment of nanomaterial-based catalysts has emerged as an effective approach to optimize their oxygen evolution reaction (OER) performance, yet the controlled electronic modulation around surface active sites remains a great challenge. Herein, directed electronic modulation of NiO nanoparticles was achieved by simple surface molecular modification with small organic molecules. By adjusting the electronic properties of modifying molecules, the local electronic structure was rationally tailored and a close electronic structure-activity relationship was discovered: the increasing electron-withdrawing modification readily decreased the electron density around surface Ni sites, accelerating the reaction kinetics and improving OER activity, and vice versa.

View Article and Find Full Text PDF

Stable nitrogen (δ N) and carbon (δ C) isotope ratios from muscle, liver and yolk were analysed from the mother and embryos of an ovoviviparous shark, Hexanchus griseus. Embryonic liver and muscle had similar δ N and δ C ratios or were depleted in heavy isotopes, compared to the same maternal somatic and reproductive yolk tissues, but no relationship existed between δ N or δ C and embryo length, as expected, because a switch to placental nourishment is lacking in this species. This study expands the understanding of maternal nourishment and embryonic stable isotope differences in ovoviviparous sharks.

View Article and Find Full Text PDF

The ability to use unprotected carbohydrates in olefin metathesis reactions in aqueous media is demonstrated. By using water-soluble, amine-functionalized Hoveyda-Grubbs catalysts under mildly acidic aqueous conditions, the self-metathesis of unprotected alkene-functionalized α-d-manno- and α-d-galactopyranosides could be achieved through minimization of nonproductive chelation and isomerization. Cross-metathesis with allyl alcohol could also be achieved with reasonable selectivity.

View Article and Find Full Text PDF

Quartz crystal microbalance (QCM) methodology has been adopted to unravel important factors contributing to the "cluster glycoside effect" observed in carbohydrate-lectin interactions. Well-defined, glycosylated nanostructures of precise sizes, geometries and functionalization patterns were designed and synthesized, and applied to analysis of the interaction kinetics and thermodynamics with immobilized lectins. The nanostructures were based on Borromean rings, dodecaamine cages, and fullerenes, each of which carrying a defined number of carbohydrate ligands at precise locations.

View Article and Find Full Text PDF

The use of water as an oxygen and hydrogen source for the paired oxygenation and hydrogenation of organic substrates to produce valuable chemicals is of utmost importance as a means of establishing green chemical syntheses. Inspired by the active Ni intermediates involved in electrocatalytic water oxidation by nickel-based materials, we prepared NiB as a catalyst and used water as the oxygen source for the oxygenation of various organic compounds. NiB was further employed as both an anode and a cathode in a paired electrosynthesis cell for the respective oxygenation and hydrogenation of organic compounds, with water as both the oxygen and hydrogen source.

View Article and Find Full Text PDF

Catalyst discovery from systems of potential precursors is a challenging endeavor. Herein, a new strategy applying dynamic chemistry to the identification of catalyst precursors from C-H activation of imines is proposed and evaluated. Using hydroacylation of imines as a model reaction, the selection of an organometallic reactive intermediate from a dynamic imine system, involving many potential directing group/metal entities, is demonstrated.

View Article and Find Full Text PDF

An enantioselective synthesis of an intermediate in the Tanino total synthesis of solanoeclepin A has been developed. The key step was an intramolecular [2+2] photocycloaddition, which led to the tricyclo[5.2.

View Article and Find Full Text PDF

Geminal frustrated Lewis pairs (FLPs) are expected to exhibit increased reactivity when the donor and acceptor sites are perfectly aligned. This is shown for reactions of the nonfluorinated FLP tBu(2)PCH(2)BPh(2) with H(2), CO(2), and isocyanates and supported computationally.

View Article and Find Full Text PDF