In addition to alleviating depression, trophic responses produced by antidepressants may regulate neural plasticity in the diseased brain, which not only provides symptomatic benefit but also potentially slows the rate of disease progression in Parkinson's disease (PD). Recent in vitro and in vivo data provide evidence that neurotrophic factors such as brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF) may be key mediators of the therapeutic response to antidepressants. As such, we conducted a cross-sectional time-course study to determine whether antidepressant-mediated changes in neurotrophic factors occur in relevant brain regions in response to amitriptyline (AMI) treatment before and after intrastriatal 6-hydroxydopamine (6OHDA).
View Article and Find Full Text PDFIn addition to alleviating depression, long-term adaptive changes induced by antidepressants may regulate neural plasticity in the diseased brain, providing symptomatic and disease-modifying effects in Parkinson's disease. The present study investigated whether chronic treatment with a frequently prescribed tricyclic antidepressant was neuroprotective in a 6-hydroxydopamine (6-OHDA) rat model of parkinsonism. In lesioned animals, chronic amitriptyline (AMI; 5 mg/kg) treatment resulted in a significant sparing of tyrosine hydroxylase-immunoreactive (THir) neurons in the substantia nigra pars compacta (SNpc) compared with saline treatment.
View Article and Find Full Text PDFNeurotrophic factors are integrally involved in the development of the nigrostriatal system and in combination with gene therapy, possess great therapeutic potential for Parkinson's disease (PD). Pleiotrophin (PTN) is involved in the development, maintenance, and repair of the nigrostriatal dopamine (DA) system. The present study examined the ability of striatal PTN overexpression, delivered via psueudotyped recombinant adeno-associated virus type 2/1 (rAAV2/1), to provide neuroprotection and functional restoration from 6-hydroxydopamine (6-OHDA).
View Article and Find Full Text PDFMultiple laboratories have recently demonstrated that long-term dopaminergic transplants form Lewy bodies in patients with Parkinson's disease. Debate has arisen as to whether these Lewy bodies form from the transfer of α synuclein from the host to the graft or whether they form from intrinsic responses of the graft from being placed into what was, or became, an inflammatory focus. To test whether the former hypothesis was possible, we grafted fetal rat ventral mesencephalon into the dopamine depleted striatum of rats that had previously received 6-hydroxydopamine lesions.
View Article and Find Full Text PDFThe current study examined whether modest concentrations of MDMA could increase the survival and/or neurite outgrowth of fetal midbrain dopamine (DA) neurons in vitro since increased DA neurite outgrowth has been previously observed in vivo from prenatal exposure. MDMA concentrations in fetal brain were quantified to determine relevant in vivo concentrations to employ in vitro. A dose response study in vitro demonstrated that MDMA, at concentrations observed in vivo, resulted in increased, DA-specific, neuron survival.
View Article and Find Full Text PDFThe poor survival rate (5-20%) of grafted embryonic dopamine (DA) neurons is one of the primary factors preventing cell replacement from becoming a viable treatment for Parkinson's disease. Previous studies have demonstrated that graft volume impacts grafted DA neuron survival, indicating that transplant parameters influence survival rates. However, the effects of mesencephalic cell concentration on grafted DA neuron survival have not been investigated.
View Article and Find Full Text PDFMcNaught and colleagues reported recently that systemic administration of proteasome inhibitors PSI (Z-Ileu-Glu(OtBu)-Ala-Leu-CHO) or epoxomicin recapitulated many of the degenerative changes seen in Parkinson's disease including loss of striatal dopamine and cell loss in the substantia nigra, locus ceruleus, dorsal motor nucleus of the X cranial nerve, and nucleus basalis of Meynert. Intracytoplasmic inclusions resembling Lewy bodies were also described. All experiments administering PSI to rats using identical procedures and multiple attempts failed to induce any of the previously described changes.
View Article and Find Full Text PDF