CRISPR-Cas12a nucleases have expanded the toolbox for targeted genome engineering in a broad range of organisms. Here, using a high-throughput engineering approach, we explored the potential of a novel CRISPR-MAD7 system for genome editing in human cells. We evaluated several thousand optimization conditions and demonstrated accurate genome reprogramming with modified MAD7.
View Article and Find Full Text PDFExercise is an effective strategy in the prevention and treatment of metabolic diseases. Alterations in the skeletal muscle proteome, including post-translational modifications, regulate its metabolic adaptations to exercise. Here, we examined the effect of high-intensity interval training (HIIT) on the proteome and acetylome of human skeletal muscle, revealing the response of 3168 proteins and 1263 lysine acetyl-sites on 464 acetylated proteins.
View Article and Find Full Text PDFLysine acetylation is a protein posttranslational modification (PTM) that occurs on thousands of lysine residues in diverse organisms from bacteria to humans. Accurate measurement of acetylation stoichiometry on a proteome-wide scale remains challenging. Most methods employ a comparison of chemically acetylated peptides to native acetylated peptides, however, the potentially large differences in abundance between these peptides presents a challenge for accurate quantification.
View Article and Find Full Text PDF