Background: The current rise of new innovative tools for mosquito control, such as the release of transgenic mosquitoes carrying a dominant lethal gene and Wolbachia-based strategies, necessitates a massive production of mosquitoes in the insectary. However, currently laboratory rearing depends on vertebrate blood for egg production and maintenance. This practice raises ethical concerns, incurs logistical and cost limitations, and entails potential risk associated with pathogen transmission and blood storage.
View Article and Find Full Text PDFPlasmodium ovale curtisi (Poc) and Plasmodium ovale wallikeri (Pow) represent distinct non-recombining Plasmodium species that are increasing in prevalence in sub-Saharan Africa. Though they circulate sympatrically, co-infection within human and mosquito hosts has rarely been described. Separate 18S rRNA real-time PCR assays that detect Poc and Pow were modified to allow species determination in parallel under identical cycling conditions.
View Article and Find Full Text PDFand represent distinct non-recombining malaria species that are increasing in prevalence in sub-Saharan Africa. Though they circulate sympatrically, co-infection within human and mosquito hosts has rarely been described. Separate 18S rRNA real-time PCR assays that detect and were modified to allow species determination in parallel under identical cycling conditions.
View Article and Find Full Text PDFBackground: Low-level of malaria transmission persist in Zanzibar despite high coverage of core vector control interventions. This study was carried out in hot-spot sites to better understand entomological factors that may contribute to residual malaria transmission in Zanzibar.
Methods: A total of 135 households were randomly selected from six sites and consented to participate with 20-25 households per site.
Background: Plasmodium ovale is a neglected malarial parasite that can form latent hypnozoites in the human liver. Over the last decade, molecular surveillance studies of non-falciparum malaria in Africa have highlighted that P. ovale is circulating below the radar, including areas where Plasmodium falciparum is in decline.
View Article and Find Full Text PDFGene drive research is progressing towards future field evaluation of modified mosquitoes for malaria control in sub-Saharan Africa. While many literature sources and guidance point to the inadequacy of individual informed consent for any genetically modified mosquito release, including gene drive ones, (outside of epidemiological studies that might require blood samples) and at the need for a community-level decision, researchers often find themselves with no specific guidance on how that decision should be made, expressed and by whom. Target Malaria, the Kenya Medical Research Institute and the Pan African Mosquito Control Association co-organised a workshop with researchers and practitioners on this topic to question the model proposed by Target Malaria in its research so far that involved the release of genetically modified sterile male mosquitoes and how this could be adapted to future studies involving gene drive mosquito releases for them to offer reflections about potential best practices.
View Article and Find Full Text PDFBackground: Different forms of mosquito modifications are being considered as potential high-impact and low-cost tools for future malaria control in Africa. Although still under evaluation, the eventual success of these technologies will require high-level public acceptance. Understanding prevailing community perceptions of mosquito modification is, therefore, crucial for effective design and implementation of these interventions.
View Article and Find Full Text PDFBackground: Zanzibar provides a good case study for malaria elimination. The islands have experienced a dramatic reduction in malaria burden since the introduction of effective vector control interventions and case management. Malaria prevalence has now been maintained below 1% for the past decade and the islands can feasibly aim for elimination.
View Article and Find Full Text PDFBackground: Malaria control in Tanzania currently relies primarily on long-lasting insecticidal nets and indoor residual spraying, alongside effective case management and behaviour change communication. This study explored opinions of key stakeholders on the national progress towards malaria elimination, the potential of currently available vector control interventions in helping achieve elimination by 2030, and the need for alternative interventions that could be used to supplement malaria elimination efforts in Tanzania.
Methods: In this exploratory qualitative study, Focus group discussions were held with policy-makers, regulators, research scientists and community members.
Paraquat is a potent superoxide (O₂)-inducing agent that is capable of inducing an oxidative imbalance in the mosquito midgut. This oxidative imbalance can super-stress the malaria parasite, leading to arrested development in the mosquito midgut and reduced transmission. While several studies have explored the effect of paraquat on malaria parasites, a fundamental understanding of the mosquito response to this compound remains unknown.
View Article and Find Full Text PDFMass administration of endectocides, drugs that kill blood-feeding arthropods, has been proposed as a complementary strategy to reduce malaria transmission. Ivermectin is one of the leading candidates given its excellent safety profile. Here we provide proof that the effect of ivermectin can be boosted at two different levels by drugs inhibiting the cytochrome or ABC transporter in the mammal host and the target mosquitoes.
View Article and Find Full Text PDFParthenin and parthenolide are natural products that are closely related in structure to artemisinin, which is also a sesquiterpene lactone (SQL) and one of the most important antimalarial drugs available. Parthenin, like artemisinin, has an effect onPlasmodiumblood stage development. We extended the evaluation of parthenin as a potential therapeutic for the transmissible stages ofPlasmodium falciparumas it transitions between human and mosquito, with the aim of gaining potential mechanistic insight into the inhibitory activity of this compound.
View Article and Find Full Text PDFMosquito-based malaria transmission-blocking vaccines (mTBVs) target midgut-surface antigens of the Plasmodium parasite's obligate vector, the Anopheles mosquito. The alanyl aminopeptidase N (AnAPN1) is the leading mTBV immunogen; however, AnAPN1's role in Plasmodium infection of the mosquito and how anti-AnAPN1 antibodies functionally block parasite transmission have remained elusive. Here we present the 2.
View Article and Find Full Text PDF