Publications by authors named "Brian T Sutch"

The retention and displacement of water molecules during formation of ligand-protein interfaces play a major role in determining ligand binding. Understanding these effects requires a method for positioning of water molecules in the bound and unbound proteins and for defining water displacement upon ligand binding. We describe an algorithm for water placement and a calculation of ligand-driven water displacement in >9000 protein-ligand complexes.

View Article and Find Full Text PDF

Measurement of distances between spin labels using electron paramagnetic resonance with the double electron-electron resonance (DEER) technique is an important method for evaluation of biomolecular structures. Computation of interlabel distances is of value for experimental planning, validation of known structures using DEER-measured distances, and determination of theoretical data for comparison with experiment. This requires steps of building labels at two defined sites on proteins, DNA or RNA; calculation of allowable label conformers based on rotation around torsional angles; computation of pairwise interlabel distances on a per conformer basis; and calculation of an average distance between the two label ensembles.

View Article and Find Full Text PDF

Water plays an important role in the mediation of biomolecular interactions. Thus, accurate prediction and evaluation of water-mediated interactions is an important element in the computational design of interfaces involving proteins, RNA, and DNA. Here, we use an algorithm (WATGEN) to predict the locations of interfacial water molecules for a data set of 224 protein-RNA interfaces.

View Article and Find Full Text PDF

We have developed a method for determination of the similarity of pairs of protein-RNA complexes, which we refer to as SIMA (Similarity by Identity and Motif Alignment). The key element in the SIMA method is the description of the protein-RNA interface in terms of motifs (salt bridges, aromatic stacking interactions, nonaromatic stacks, hydrophobic interactions, and hydrogen-bonded motifs), in addition to single hydrogen bonds and van der Waals contacts. Based on a pairwise scoring function combining motif alignment with identity of the protein and RNA sequences, we define a SIMA score for any pair of protein-RNA complexes.

View Article and Find Full Text PDF

Zebularine (1-(beta-D-ribofuranosyl)-1,2-dihydropyrimidin-2-one) was studied as both a 2 '-deoxyribosyl 5 '-triphosphate derivative and as a template incorporated into an oligonucleotide. Using a novel pyrosequencing assay, zebularine acted as cytosine analog and was incorporated into DNA with a template pairing profile most similar to cytosine, pairing with greatest efficiency opposite guanine in the template strand. Guanine was incorporated with greater affinity than adenine opposite a zebularine in the template strand.

View Article and Find Full Text PDF

Nanometer distances in nucleic acids can be measured by EPR using two 1-oxyl-2,2,5,5-tetramethylpyrroline radicals, with each label attached via a methylene group to a phosphorothioate-substituted backbone position as one of two phosphorothioate diastereomers (R(P) and S(P)). Correlating the internitroxide distance to the geometry of the parent molecule requires computational analysis of the label conformers. Here, we report sixteen 4-ns MD simulations on a DNA duplex d(CTACTGCTTTAG) .

View Article and Find Full Text PDF