and produce carcinogenic aflatoxins during crop infection, with extensive variations in production among isolates, ranging from atoxigenic to highly toxigenic. Here, we report draft genome sequences of one isolate and nine isolates from field environments for use in comparative, functional, and phylogenetic studies.
View Article and Find Full Text PDFContamination of crops with aflatoxin is a serious global threat to food safety. Aflatoxin production by Aspergillus flavus is exacerbated by drought stress in the field and by oxidative stress in vitro. We examined transcriptomes of three toxigenic and three atoxigenic isolates of A.
View Article and Find Full Text PDFDrought stress decreases crop growth, yield, and can further exacerbate pre-harvest aflatoxin contamination. Tolerance and adaptation to drought stress is an important trait of agricultural crops like maize. However, maize genotypes with contrasting drought tolerances have been shown to possess both common and genotype-specific adaptations to cope with drought stress.
View Article and Find Full Text PDFDrought stress in the field has been shown to exacerbate aflatoxin contamination of maize and peanut. Drought and heat stress also produce reactive oxygen species (ROS) in plant tissues. Given the potential correlation between ROS and exacerbated aflatoxin production under drought and heat stress, the objectives of this study were to examine the effects of hydrogen peroxide (H2O2)-induced oxidative stress on the growth of different toxigenic (+) and atoxigenic (-) isolates of Aspergillus flavus and to test whether aflatoxin production affects the H2O2 concentrations that the isolates could survive.
View Article and Find Full Text PDFDrought stress is a major factor that contributes to disease susceptibility and yield loss in agricultural crops. To identify drought responsive proteins and explore metabolic pathways involved in maize tolerance to drought stress, two maize lines (B73 and Lo964) with contrasting drought sensitivity were examined. The treatments of drought and well water were applied at 14 days after pollination (DAP), and protein profiles were investigated in developing kernels (35 DAP) using iTRAQ (isobaric tags for relative and absolute quantitation).
View Article and Find Full Text PDFSince the early 1960s, the fungal pathogen Aspergillus flavus (Link ex Fr.) has been the focus of intensive research due to the production of carcinogenic and highly toxic secondary metabolites collectively known as aflatoxins following pre-harvest colonization of crops. Given this recurrent problem and the occurrence of a severe aflatoxin outbreak in maize (Zea mays L.
View Article and Find Full Text PDFKey impediments to increased corn yield and quality in the southeastern US coastal plain region are damage by ear-feeding insects and aflatoxin contamination caused by infection of Aspergillus flavus. Key ear-feeding insects are corn earworm, Helicoverpa zea, fall armyworm, Spodoptera frugiperda, maize weevil, Sitophilus zeamais, and brown stink bug, Euschistus servus. In 2006 and 2007, aflatoxin contamination and insect damage were sampled before harvest in three 0.
View Article and Find Full Text PDFThis research examined the expression patterns of 94 stress-related genes in seven maize inbred lines with differential expressions of resistance to aflatoxin contamination. The objective was to develop a set of genes/probes associated with resistance to A. flavus and/or aflatoxin contamination.
View Article and Find Full Text PDFBrown stink bug, Euschistus servus (Say) (Heteroptera: Pentatomidae), damage on developing corn, Zea mays L., ears was examined in 2005 and 2006 by using eight parameters related to its yield and kernel quality. Stink bug infestations were initiated when the corn plants were at tasseling (VT), mid-silking (R1), and blister (R2) stages by using zero, three, and six in 2005 or zero, one, two, and four bugs per ear in 2006, and maintained for 9 d.
View Article and Find Full Text PDFPreharvest aflatoxin contamination of grain grown on the US southeastern Coast Plain is provoked and aggravated by abiotic stress. The primary abiotic stress is drought along with high temperatures. The objectives of the present study were to monitor gene expression in developing kernels in response to drought stress and to identify drought-responsive genes for possible use in germplasm assessment.
View Article and Find Full Text PDFThroughout the world, aflatoxin contamination is considered one of the most serious food safety issues concerning health. Chronic problems with preharvest aflatoxin contamination occur in the southern US, and are particularly troublesome in corn, peanut, cottonseed, and tree nuts. Drought stress is a major factor to contribute to preharvest aflatoxin contamination.
View Article and Find Full Text PDFBackground: Peanut (Arachis hypogaea L.) is an important crop economically and nutritionally, and is one of the most susceptible host crops to colonization of Aspergillus parasiticus and subsequent aflatoxin contamination. Knowledge from molecular genetic studies could help to devise strategies in alleviating this problem; however, few peanut DNA sequences are available in the public database.
View Article and Find Full Text PDFAm J Physiol Cell Physiol
August 2005
The nonreceptor protein tyrosine kinase (PTK) proline-rich tyrosine kinase 2 (PYK2) has been implicated in cell signaling pathways involved in left ventricular hypertrophy and heart failure, but its exact role has not been elucidated. In this study, replication-defective adenoviruses (Adv) encoding green fluorescent protein (GFP)-tagged, wild-type (WT), and mutant forms of PYK2 were used to determine whether PYK2 overexpression activates MAPKs, and downregulates SERCA2 mRNA levels in neonatal rat ventricular myocytes (NRVM). PYK2 overexpression significantly decreased SERCA2 mRNA (as determined by Northern blot analysis and real-time RT-PCR) to 54 +/- 4% of Adv-GFP-infected cells 48 h after Adv infection.
View Article and Find Full Text PDFBackground: Developing monocots that accumulate more vegetative tissue protein is one strategy for improving nitrogen-sequestration and nutritive value of forage and silage crops. In soybeans (a dicotyledonous legume), the vspA and B genes encode subunits of a dimeric vegetative storage protein that plays an important role in nitrogen storage in vegetative tissues. Similar genes are found in monocots; however, they do not accumulate in leaves as storage proteins, and the ability of monocot leaves to support accumulation of an ectopically expressed soybean VSP is in question.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
October 2003
Focal adhesion kinase (FAK) is a nonreceptor protein tyrosine kinase critical for both cardiomyocyte survival and sarcomeric assembly during endothelin (ET)-induced cardiomyocyte hypertrophy. ET-induced FAK activation requires upstream activation of one or more isoenzymes of protein kinase C (PKC). Therefore, with the use of replication-defective adenoviruses (Adv) to overexpress constitutively active (ca) and dominant negative (dn) mutants of PKCs, we examined which PKC isoenzymes are necessary for FAK activation and which downstream signaling components are involved.
View Article and Find Full Text PDFPatients with cardiac hypertrophy and heart failure display abnormally slowed myocardial relaxation, which is associated with downregulation of sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA2) gene expression. We previously showed that SERCA2 downregulation can be simulated in cultured neonatal rat ventricular myocytes (NRVM) by treatment with the protein kinase C (PKC) activator phorbol 12-myristate 13-acetate (PMA). However, NRVM express three different PMA-sensitive PKC isoenzymes (PKCalpha, PKCepsilon, and PKCdelta), which may be differentially regulated and have specific functions in the cardiomyocyte.
View Article and Find Full Text PDF