Publications by authors named "Brian T Naughton"

Orphan cytotoxins are small molecules for which the mechanism of action (MoA) is either unknown or ambiguous. Unveiling the mechanism of these compounds may lead to useful tools for biological investigation and new therapeutic leads. In selected cases, the DNA mismatch repair-deficient colorectal cancer cell line, HCT116, has been used as a tool in forward genetic screens to identify compound-resistant mutations, which have ultimately led to target identification.

View Article and Find Full Text PDF

While the cost and speed of generating genomic data have come down dramatically in recent years, the slow pace of collecting medical data for large cohorts continues to hamper genetic research. Here we evaluate a novel online framework for obtaining large amounts of medical information from a recontactable cohort by assessing our ability to replicate genetic associations using these data. Using web-based questionnaires, we gathered self-reported data on 50 medical phenotypes from a generally unselected cohort of over 20,000 genotyped individuals.

View Article and Find Full Text PDF

Given a set of known binding sites for a specific transcription factor, it is possible to build a model of the transcription factor binding site, usually called a motif model, and use this model to search for other sites that bind the same transcription factor. Typically, this search is performed using a position-specific scoring matrix (PSSM), also known as a position weight matrix. In this paper we analyze a set of eukaryotic transcription factor binding sites and show that there is extensive clustering of similar k-mers in eukaryotic motifs, owing to both functional and evolutionary constraints.

View Article and Find Full Text PDF

Motivation: DNA motif finding is one of the core problems in computational biology, for which several probabilistic and discrete approaches have been developed. Most existing methods formulate motif finding as an intractable optimization problem and rely either on expectation maximization (EM) or on local heuristic searches. Another challenge is the choice of motif model: simpler models such as the position-specific scoring matrix (PSSM) impose biologically unrealistic assumptions such as independence of the motif positions, while more involved models are harder to parametrize and learn.

View Article and Find Full Text PDF