Publications by authors named "Brian T Good"

An on-chip micropump for portable microfluidic applications was investigated using mathematical modeling and experimental testing. This micropump is activated by the addition of water, via a dropper, to ionic polymer particles that swell due to osmotic effects when wetted. The resulting particle volume increase deflects a membrane, forcing a separate fluid from an adjacent reservoir.

View Article and Find Full Text PDF

A water-activated, effervescent reaction was used to transport fluid in a controllable manner on a portable microfluidic device. The reaction between sodium bicarbonate and an organic acid, tartaric acid and/or benzoic acid, was modeled to analyze methods of controlling the generation of carbon-dioxide gas for the purposes of pumping fluids. Integration and testing of the effervescent reaction pump in a microfluidic device was made possible by using elastomeric polymers as both photopolymerizable septa and removable lids.

View Article and Find Full Text PDF

Novel fabrication techniques and polymer systems are being explored to enable mass production of low cost microfluidic devices. In this contribution we discuss a new fabrication scheme for making microfluidic devices containing porous polymer components in situ. Contact lithography, a living radical photopolymer (LRPP) system and salt leaching were used to fabricate multilayer microfluidic devices rapidly with various channel geometries and covalently attached porous polymer plugs made of various photopolymerizable substrates.

View Article and Find Full Text PDF

Microfluidic devices are commonly fabricated in silicon or glass using micromachining technology or elastomers using soft lithography methods; however, invariable bulk material properties, limited surface modification methods and difficulty in fabricating high aspect ratio devices prevent these materials from being utilized in numerous applications and/or lead to high fabrication costs. Contact Liquid Photolithographic Polymerization (CLiPP) was developed as an alternative microfabrication approach that uniquely exploits living radical photopolymerization chemistry to facilitate surface modification of device components, fabrication of high aspect ratio structures from many different materials with numerous covalently-adhered layers and facile construction of three-dimensional devices. This contribution describes CLiPP and demonstrates unique advantages of this new technology for microfabrication of polymeric microdevices.

View Article and Find Full Text PDF