Introduction: Diffusion tensor image analysis along the perivascular space (DTI-ALPS) index was proposed for assessing glymphatic clearance function. This study evaluated DTI-ALPS as a biomarker for cerebral small vessel disease (cSVD) related vascular cognitive impairment and dementia (VCID).
Methods: Four independent cohorts were examined.
Non-heme iron is essential for critical neuronal functions such as ATP generation, synaptogenesis, neurotransmitter synthesis, and myelin formation. However, as non-heme iron accumulates with age, excessive levels can contribute to oxidative stress, potentially disrupting neuronal integrity and contributing to cognitive decline. Despite growing evidence linking high brain iron with poorer cognitive performance, there are currently no proven methods to reduce brain iron accumulation in aging or to protect cognitive function from iron's negative effects.
View Article and Find Full Text PDFBackground: Peak-width of skeletonized mean diffusivity (PSMD), a neuroimaging marker of cerebral small vessel disease (SVD), has shown excellent instrumental properties. Here, we extend our work to perform a biological validation of PSMD.
Methods: We included 396 participants from the Biomarkers for Vascular Contributions to Cognitive Impairment and Dementia (MarkVCID-1) Consortium and three replication samples (Cohorts for Heart and Aging Research in Genomic Epidemiology = 6172, Rush University Medical Center = 287, University of California Davis Alzheimer's Disease Research Center = 567).
The blood-brain barrier (BBB) plays a pivotal role in protecting the central nervous system (CNS), and shielding it from potential harmful entities. A natural decline of BBB function with aging has been reported in both animal and human studies, which may contribute to cognitive decline and neurodegenerative disorders. Limited data also suggest that being female may be associated with protective effects on BBB function.
View Article and Find Full Text PDFThis study evaluated longitudinal brain iron accumulation in older adults, its association with cognition, and the role of specific nutrients in mitigating iron accumulation. MRI-based, quantitative susceptibility mapping estimates of brain iron concentration were acquired from seventy-two healthy older adults (47 women, ages 60-86) at a baseline timepoint (TP1) and a follow-up timepoint (TP2) 2.5-3.
View Article and Find Full Text PDFIntroduction: We evaluated the relationship between baseline enlarged perivascular space (ePVS) burden and later cognitive decline.
Methods: 83 community-dwelling, older adults (aged 56-86) completed three annual cognitive assessments that included the Clinical Dementia Rating (CDR®) Dementia Staging Instrument Sum of Boxes (CDR-SB) and composite measures of executive function and episodic memory. An MRI scan at baseline was used to count ePVS in the basal ganglia and centrum semiovale.
Vascular risk factors contribute to cognitive aging, with one such risk factor being dysfunction of the blood brain barrier (BBB). Studies using non-invasive magnetic resonance imaging (MRI) techniques, such as diffusion prepared arterial spin labeling (DP-ASL), can estimate BBB function by measuring water exchange rate (kw). DP-ASL kw has been associated with cognition, but the directionality and strength of the relationship is still under investigation.
View Article and Find Full Text PDFThe blood-brain barrier (BBB) plays a pivotal role in protecting the central nervous system (CNS), shielding it from potential harmful entities. A natural decline of BBB function with aging has been reported in both animal and human studies, which may contribute to cognitive decline and neurodegenerative disorders. Limited data also suggest that being female may be associated with protective effects on BBB function.
View Article and Find Full Text PDFJ Alzheimers Dis
November 2023
Background: White matter hyperintensities (WMH) that occur in the setting of vascular cognitive impairment and dementia (VCID) may be dynamic increasing or decreasing volumes or stable over time. Quantifying such changes may prove useful as a biomarker for clinical trials designed to address vascular cognitive-impairment and dementia and Alzheimer's Disease.
Objective: Conducting multi-site cross-site inter-rater and test-retest reliability of the MarkVCID white matter hyperintensity growth and regression protocol.
The blood-brain barrier (BBB) undergoes functional changes with aging which may contribute to cognitive decline. A novel, diffusion prepared arterial spin labeling-based MRI technique can measure the rate of water exchange across the BBB (k) and may thus be sensitive to age-related alterations in water exchange at the BBB. However, studies investigating relationships between k and cognition have reported different directions of association.
View Article and Find Full Text PDFBackground: Increasing evidence suggests that enlarged perivascular spaces (ePVS) are associated with cognitive dysfunction in aging. However, the pathogenesis of ePVS remains unknown. Here, we tested the possibility that baseline cerebrovascular dysfunction, as measured by a magnetic resonance imaging measure of cerebrovascular reactivity, contributes to the later development of ePVS.
View Article and Find Full Text PDFBackground And Purpose: Cerebral small vessel disease (SVD) has been suggested to contribute to the pathogenesis of Alzheimer's disease (AD). Yet, the role of SVD in potentially contributing to AD pathology is unclear. The main objective of this study was to test the hypothesis that WMHs influence amyloid β (Aβ) levels within connected default mode network (DMN) tracts and cortical regions in cognitively unimpaired older adults.
View Article and Find Full Text PDFThe diffusion tensor image analysis along the perivascular space (DTI-ALPS) method was proposed to evaluate glymphatic system (GS) function. However, few studies have validated its reliability and reproducibility. Fifty participants' DTI data from the MarkVCID consortium were included in this study.
View Article and Find Full Text PDFIntroduction: We evaluated the relationship between plasma levels of transactive response DNA binding protein of 43 kDa (TDP-43) and neuroimaging (magnetic resonance imaging [MRI]) measures of brain structure in aging.
Methods: Plasma samples were collected from 72 non-demented older adults (age range 60-94 years) in the University of Kentucky Alzheimer's Disease Research Center cohort. Multivariate linear regression models were run with plasma TDP-43 level as the predictor variable and brain structure (volumetric or cortical thickness) measurements as the dependent variable.
Co-occurrence of beta amyloid (Aβ) and white matter hyperintensities (WMHs) increase the risk of dementia and both are considered biomarkers of preclinical dementia. Moderation and mediation modeling were used to define the interplay between global and regional Aβ and WMHs measures in relation to executive function (EF) and memory composite scores outcomes at baseline and after approximately 2 years across a sample of 714 clinically normal participants from the Alzheimer's Disease Neuroimaging Initiative (ADNI 2). The moderation regression analysis showed additive effects of Aβ and WMHs over baseline memory and EF scores ( = 0.
View Article and Find Full Text PDFAlzheimers Dement (Amst)
December 2022
Introduction: To evaluate the clinical validity of free water (FW), a diffusion tensor imaging-based biomarker kit proposed by the MarkVCID consortium, by investigating the association between mean FW (mFW) and executive function.
Methods: Baseline mFW was related to a baseline composite measure of executive function (EFC), adjusting for relevant covariates, in three MarkVCID sub-cohorts, and replicated in five, large, independent legacy cohorts. In addition, we tested whether baseline mFW predicted accelerated EFC score decline (mean follow-up time: 1.
Multi-compartment diffusion MRI metrics [such as metrics from free water elimination diffusion tensor imaging (FWE-DTI) and neurite orientation dispersion and density imaging (NODDI)] may reflect more specific underlying white-matter tract characteristics than traditional, single-compartment metrics [i.e., metrics from Diffusion Tensor Imaging (DTI)].
View Article and Find Full Text PDFEmerging evidence suggests that enlarged perivascular spaces (ePVS) may be a clinically significant neuroimaging marker of global cognitive function related to cerebral small vessel disease (cSVD). We tested this possibility by assessing the relationship between ePVS and both a standardized measure of global cognitive function, the Montreal Cognitive Assessment (MoCA), and an established marker of cSVD, white matter hyperintensity volume (WMH) volume. One hundred and eleven community-dwelling older adults (56-86) underwent neuroimaging and MoCA testing.
View Article and Find Full Text PDFBackground: Global amyloid-β (Aβ) deposition in the brain can be quantified by Aβ-PET scans to support or refute a diagnosis of preclinical Alzheimer's disease (pAD). Yet, Aβ-PET scans enable quantitative evaluation of regional Aβ elevations in pAD, potentially allowing even earlier detection of pAD, long before global positivity is achieved. It remains unclear as to whether such regional changes are clinically meaningful.
View Article and Find Full Text PDFIntroduction: To describe the protocol and findings of the instrumental validation of three imaging-based biomarker kits selected by the MarkVCID consortium: free water (FW) and peak width of skeletonized mean diffusivity (PSMD), both derived from diffusion tensor imaging (DTI), and white matter hyperintensity (WMH) volume derived from fluid attenuation inversion recovery and T1-weighted imaging.
Methods: The instrumental validation of imaging-based biomarker kits included inter-rater reliability among participating sites, test-retest repeatability, and inter-scanner reproducibility across three types of magnetic resonance imaging (MRI) scanners using intra-class correlation coefficients (ICC).
Results: The three biomarkers demonstrated excellent inter-rater reliability (ICC >0.
Quantitative susceptibility mapping (QSM) is an MRI-based, computational method for anatomically localizing and measuring concentrations of specific biomarkers in tissue such as iron. Growing research suggests QSM is a viable method for evaluating the impact of iron overload in neurological disorders and on cognitive performance in aging. Several software toolboxes are currently available to reconstruct QSM maps from 3D GRE MR Images.
View Article and Find Full Text PDFCerebrovascular reactivity (CVR), which measures the ability of cerebral blood vessels to dilate or constrict in response to vasoactive stimuli such as CO2 inhalation, is an important index of the brain's vascular health. Quantification of CVR using BOLD MRI with hypercapnia challenge has shown great promises in research and clinical studies. However, in order for it to be used as a potential imaging biomarker in large-scale and multi-site studies, the reliability of CO2-CVR quantification across different MRI acquisition platforms and researchers/raters must be examined.
View Article and Find Full Text PDF