Publications by authors named "Brian Stern"

We propose and demonstrate an integrated wavemeter capable of accurate and broadband measurements without control or knowledge of the temperature. In our design, interferometers composed of silicon and silicon nitride waveguides enable accurate measurements of an input optical wavelength despite large and rapid temperature fluctuations of 20°C by leveraging the disparity in thermo-optic properties of the waveguides. We derive formulas which resolve the wavelength and temperature ambiguity of the interferometers.

View Article and Find Full Text PDF

We demonstrate a hybrid silicon tunable laser with wide tunability and rapid switching speed for applications in sensing and optical networks. By implementing an optimized carrier injection phase shifter design, the filters of the silicon laser cavity may be efficiently controlled, enabling both fine and broad wavelength tuning across a 56 nm range, in addition to a rapid 10 ns switching time. The laser emits up to 10 dBm output power, and the linewidth is near 200 kHz.

View Article and Find Full Text PDF

We report on the self-biasing effect of carrier depletion based silicon microring modulators (MRM) by demonstrating that a silicon MRM can generate open eye diagrams for non-return-to-zero (NRZ) on-off keying (OOK) modulation without an external reverse bias supplied to it. Two modulator configurations are investigated namely single-ended drive in a ground-signal-ground and differential drive in a ground-signal-signal-ground pad configurations. The single-ended modulator is designed with an on photonic integrated circuit (PIC) 50 Ω termination.

View Article and Find Full Text PDF

Optical frequency combs are broadband sources that offer mutually coherent, equidistant spectral lines with unprecedented precision in frequency and timing for an array of applications. Frequency combs generated in microresonators through the Kerr nonlinearity require a single-frequency pump laser and have the potential to provide highly compact, scalable and power-efficient devices. Here we demonstrate a device-a laser-integrated Kerr frequency comb generator-that fulfils this potential through use of extremely low-loss silicon nitride waveguides that form both the microresonator and an integrated laser cavity.

View Article and Find Full Text PDF

Since the emergence of optical fiber communications, lithium niobate (LN) has been the material of choice for electro-optic modulators, featuring high data bandwidth and excellent signal fidelity. Conventional LN modulators however are bulky, expensive and power hungry, and cannot meet the growing demand in modern optical data links. Chip-scale, highly integrated, LN modulators could offer solutions to this problem, yet the fabrication of low-loss devices in LN thin films has been challenging.

View Article and Find Full Text PDF

We design and demonstrate a compact, narrow-linewidth integrated laser based on low-loss silicon nitride waveguides coupled to a III-V gain chip. By using a highly confined optical mode, we simultaneously achieve compact bends and ultra-low loss. We leverage the narrowband backreflection of a high-Q microring resonator to act as a cavity output mirror, a single-mode filter, and a propagation delay all in one.

View Article and Find Full Text PDF