Publications by authors named "Brian Soden"

Projections of future tropical cyclone frequency are uncertain, ranging from a slight increase to a considerable decrease according to climate models. Estimation of how much the Earth's surface temperature warms in response to greenhouse gas increase, quantified by effective climate sensitivity, is also uncertain. These two uncertainties have historically been studied independently as they concern different scales: One quantifies the extreme weather and the other the mean climate.

View Article and Find Full Text PDF

When evaluating the effect of carbon dioxide (CO) changes on Earth's climate, it is widely assumed that instantaneous radiative forcing from a doubling of a given CO concentration (IRF) is constant and that variances in climate sensitivity arise from differences in radiative feedbacks or dependence of these feedbacks on the climatological base state. Here, we show that the IRF is not constant, but rather depends on the climatological base state, increasing by about 25% for every doubling of CO, and has increased by about 10% since the preindustrial era primarily due to the cooling within the upper stratosphere, implying a proportionate increase in climate sensitivity. This base-state dependence also explains about half of the intermodel spread in IRF, a problem that has persisted among climate models for nearly three decades.

View Article and Find Full Text PDF

The large-scale moistening of the atmosphere in response to increasing greenhouse gases amplifies the existing patterns of precipitation minus evaporation (P-E) which, in turn, amplifies the spatial contrast in sea surface salinity (SSS). Through a series of transient CO doubling experiments, we demonstrate that surface salinification driven by the amplified dry conditions (P-E < 0), primarily in the subtropical ocean, accelerates ocean heat uptake. The salinification also drives the sequestration of upper-level heat into the deeper ocean, reducing the thermal stratification and increasing the heat uptake through a positive feedback.

View Article and Find Full Text PDF

Water vapor in the upper troposphere strongly regulates the strength of water-vapor feedback, which is the primary process for amplifying the response of the climate system to external radiative forcings. Monitoring changes in upper-tropospheric water vapor and scrutinizing the causes of such changes are therefore of great importance for establishing the credibility of model projections of past and future climates. Here, we use coupled ocean-atmosphere model simulations under different climate-forcing scenarios to investigate satellite-observed changes in global-mean upper-tropospheric water vapor.

View Article and Find Full Text PDF

Climate models suggest that extreme precipitation events will become more common in an anthropogenically warmed climate. However, observational limitations have hindered a direct evaluation of model-projected changes in extreme precipitation. We used satellite observations and model simulations to examine the response of tropical precipitation events to naturally driven changes in surface temperature and atmospheric moisture content.

View Article and Find Full Text PDF

The response of tropical cyclone activity to global warming is widely debated. It is often assumed that warmer sea surface temperatures provide a more favourable environment for the development and intensification of tropical cyclones, but cyclone genesis and intensity are also affected by the vertical thermodynamic properties of the atmosphere. Here we use climate models and observational reconstructions to explore the relationship between changes in sea surface temperature and tropical cyclone 'potential intensity'--a measure that provides an upper bound on cyclone intensity and can also reflect the likelihood of cyclone development.

View Article and Find Full Text PDF

Since the mid-nineteenth century the Earth's surface has warmed, and models indicate that human activities have caused part of the warming by altering the radiative balance of the atmosphere. Simple theories suggest that global warming will reduce the strength of the mean tropical atmospheric circulation. An important aspect of this tropical circulation is a large-scale zonal (east-west) overturning of air across the equatorial Pacific Ocean--driven by convection to the west and subsidence to the east--known as the Walker circulation.

View Article and Find Full Text PDF

Climate models predict that the concentration of water vapor in the upper troposphere could double by the end of the century as a result of increases in greenhouse gases. Such moistening plays a key role in amplifying the rate at which the climate warms in response to anthropogenic activities, but has been difficult to detect because of deficiencies in conventional observing systems. We use satellite measurements to highlight a distinct radiative signature of upper tropospheric moistening over the period 1982 to 2004.

View Article and Find Full Text PDF

The sensitivity of Earth's climate to an external radiative forcing depends critically on the response of water vapor. We use the global cooling and drying of the atmosphere that was observed after the eruption of Mount Pinatubo to test model predictions of the climate feedback from water vapor. Here, we first highlight the success of the model in reproducing the observed drying after the volcanic eruption.

View Article and Find Full Text PDF

It is widely assumed that variations in Earth's radiative energy budget at large time and space scales are small. We present new evidence from a compilation of over two decades of accurate satellite data that the top-of-atmosphere (TOA) tropical radiative energy budget is much more dynamic and variable than previously thought. Results indicate that the radiation budget changes are caused by changes in tropical mean cloudiness.

View Article and Find Full Text PDF