Goal-directed behavior requires adaptive systems that respond to environmental demands. In the absence of threat (or presence of reward), individuals can explore many behavioral trajectories, effectively interrogating the environment across multiple dimensions. This leads to flexible, relational memory encoding and retrieval.
View Article and Find Full Text PDFWhen we face danger or stress, the presence of others can provide a powerful signal of safety and support. However, despite a large literature on group living benefits in animals, few studies have been conducted on how group size alters subjective emotional responses and threat perception in humans. We conducted 5 experiments (N = 3,652) to investigate whether the presence of others decreases fear in response to threat under a variety of conditions.
View Article and Find Full Text PDFNatural observations suggest that in safe environments, organisms avoid competition to maximize gain, while in hazardous environments the most effective survival strategy is to congregate with competition to reduce the likelihood of predatory attack. We probed the extent to which survival decisions in humans follow these patterns, and examined the factors that determined individual-level decision-making. In a virtual foraging task containing changing levels of competition in safe and hazardous patches with virtual predators, we demonstrate that human participants inversely select competition avoidant and risk diluting strategies depending on perceived patch value (PPV), a computation dependent on reward, threat, and competition.
View Article and Find Full Text PDFThe social environment presents the human brain with the most complex information processing demands. The computations that the brain must perform occur in parallel, combine social and nonsocial cues, produce verbal and nonverbal signals and involve multiple cognitive systems, including memory, attention, emotion and learning. This occurs dynamically and at timescales ranging from milliseconds to years.
View Article and Find Full Text PDFDuring social interaction, the brain has the enormous task of interpreting signals that are fleeting, subtle, contextual, abstract, and often ambiguous. Despite the signal complexity, the human brain has evolved to be highly successful in the social landscape. Here, we propose that the human brain makes sense of noisy dynamic signals through accumulation, integration, and prediction, resulting in a coherent representation of the social world.
View Article and Find Full Text PDFWe propose a Survival Optimization System (SOS) to account for the strategies that humans and other animals use to defend against recurring and novel threats. The SOS attempts to merge ecological models that define a repertoire of contextually relevant threat induced survival behaviors with contemporary approaches to human affective science. We first propose that the goal of the nervous system is to reduce surprise and optimize actions by (i) predicting the sensory landscape by simulating possible encounters with threat and selecting the appropriate pre-encounter action and (ii) prevention strategies in which the organism manufactures safe environments.
View Article and Find Full Text PDFFinancial incentives are commonly used as motivational tools to enhance performance. Decades of research have established that the neurotransmitter dopamine (DA) is the fuel that propels reward-motivated behavior, yet a new PET study questions whether dopamine is beneficial to performance, showing that tonic DA synthesis predicts performance decrements when incentives are high.
View Article and Find Full Text PDF