SETD2, a lysine -methyltransferase, is a histone methyltransferase that plays an important role in various cellular processes and was identified as a target of interest in multiple myeloma that features a t(4,14) translocation. We recently reported the discovery of a novel small-molecule SETD2 inhibitor tool compound that is suitable for preclinical studies. Herein we describe the conformational-design-driven evolution of the advanced chemistry lead, which resulted in compounds appropriate for clinical evaluation.
View Article and Find Full Text PDFEDP-938 is a novel non-fusion replication inhibitor of respiratory syncytial virus (RSV). It is highly active against all RSV-A and B laboratory strains and clinical isolates tested in vitro in various cell lines and assays, with half-maximal effective concentrations (EC50s) of 21, 23 and 64 nM against Long (A), M37 (A) and VR-955 (B) strains, respectively, in the primary human bronchial epithelial cells (HBECs). EDP-938 inhibits RSV at a post-entry replication step of the viral life cycle as confirmed by time-of-addition study, and the activity appears to be mediated by viral nucleoprotein (N).
View Article and Find Full Text PDFType 2 diabetes mellitus (T2DM) is characterized by chronically elevated plasma glucose levels. The inhibition of glucagon-induced hepatic glucose output via antagonism of the glucagon receptor (GCGR) using a small-molecule antagonist is a promising mechanism for improving glycemic control in the diabetic state. The present work discloses the discovery of indazole-based β-alanine derivatives as potent GCGR antagonists through an efficient enantioselective synthesis and structure-activity relationship (SAR) exploration and optimization.
View Article and Find Full Text PDFA novel series of indazole/indole derivatives were discovered as glucagon receptor (GCGR) antagonists through scaffold hopping based on two literature leads: MK-0893 and LY-2409021. Further structure-activity relationship (SAR) exploration and optimization led to the discovery of multiple potent GCGR antagonists with excellent pharmacokinetic properties in mice and rats, including low systemic clearance, long elimination half-life, and good oral bioavailability. These potent GCGR antagonists could be used for potential treatment of type II diabetes.
View Article and Find Full Text PDFGlucagon-containing α-cells potently regulate glucose homeostasis, but the developmental biology of α-cells in adults remains poorly understood. Although glucagon receptor antagonists (GRAs) have great potential as antidiabetic therapies, murine and human studies have raised concerns that GRAs might cause uncontrolled α-cell growth. Surprisingly, previous rodent GRA studies were only performed in young mice, implying that the potential impact of GRAs to drive α-cell expansion in adult patients is unclear.
View Article and Find Full Text PDFBackground: Migraine is considered a neurovascular disorder, but its pathophysiological mechanisms are not yet fully understood. Adenosine has been shown to increase in plasma during migraine attacks and to induce vasodilation in several blood vessels; however, it remains unknown whether adenosine can interact with the trigeminovascular system. Moreover, caffeine, a non-selective adenosine receptor antagonist, is included in many over the counter anti-headache/migraine treatments.
View Article and Find Full Text PDFTop Curr Chem (Cham)
April 2017
Respiratory syncytial virus (RSV) infection presents a significant health challenge in small children, the elderly and immunocompromised patients. There is still a high unmet medical need among patients with RSV infection, and no specific antiviral therapy is available. The only approved agents are palivizumab, which has to be given prophylactically, mainly in high-risk infants, and ribavirin, which is rarely used due to toxicity concerns and questionable benefits.
View Article and Find Full Text PDFAdenosine A2A antagonists are believed to have therapeutic potential in the treatment of Parkinson's disease (PD). We have characterized the dual adenosine A2A/A1 receptor antagonist JNJ-40255293 (2-amino-8-[2-(4-morpholinyl)ethoxy]-4-phenyl-5H-indeno[1,2-d]pyrimidin-5-one). JNJ-40255293 was a high-affinity (7.
View Article and Find Full Text PDFA novel series of benzyl substituted thieno[2,3-d]pyrimidines were identified as potent A2A receptor antagonists. Several five- and six-membered heterocyclic replacements for the optimized methylfuran were explored. Select compounds effectively reverse catalepsy in mice when dosed orally.
View Article and Find Full Text PDFThis Review summarizes and updates the work on adenosine A(2A) receptor antagonists for Parkinson's disease from 2006 to the present. There have been numerous publications, patent applications, and press releases within this time frame that highlight new medicinal chemistry approaches to this attractive and promising target to treat Parkinson's disease. The Review is broken down by scaffold type and will discuss the efforts to optimize particular scaffolds for activity, pharmacokinetics, and other drug discovery parameters.
View Article and Find Full Text PDFThe design and characterization of two, dual adenosine A(2A)/A(1) receptor antagonists in several animal models of Parkinson's disease is described. Compound 1 was previously reported as a potential treatment for Parkinson's disease. Further characterization of 1 revealed that it was metabolized to reactive intermediates that caused the genotoxicity of 1 in the Ames and mouse lymphoma L51784 assays.
View Article and Find Full Text PDF2-Amino-4-phenyl-8-pyrrolidin-1-ylmethyl-indeno[1,2-d]pyrimidin-5-one (1) is a novel and potent selective dual A(2A)/A(1) adenosine receptor antagonist from the arylindenopyrimidine series that was determined to be genotoxic in both the Ames and Mouse Lymphoma L5178Y assays only following metabolic activation. Compound 1 was identified as a frame-shift mutagen in Salmonella typhimurium tester strain TA1537 as indicated by a significant dose-dependent increase in revertant colonies as compared to the vehicle control. The metabolic activation-dependent irreversible covalent binding of radioactivity to DNA, recovery of 1 and its enamine metabolite from acid hydrolysis of covalently modified DNA, and protection of covalent binding to DNA by both cyanide ion and methoxylamine suggest that the frame-shift mutation in TA1537 strain involved covalent binding instead of simple intercalation to DNA.
View Article and Find Full Text PDFThe in vivo characterization of a dual adenosine A(2A)/A(1) receptor antagonist in several animal models of Parkinson's disease is described. Discovery and scale-up syntheses of compound 1 are described in detail, highlighting optimization steps that increased the overall yield of 1 from 10.0% to 30.
View Article and Find Full Text PDFA novel series of arylindenopyrimidines were identified as A(2A) and A(1) receptor antagonists. The series was optimized for in vitro activity by substituting the 8- and 9-positions with methylene amine substituents. The compounds show excellent activity in mouse models of Parkinson's disease when dosed orally.
View Article and Find Full Text PDFTwo reactive metabolites were identified in vivo for the dual A(2A)/A(1) receptor antagonist 1. Two strategies were implemented to successfully mitigate the metabolic liabilities associated with 1. Optimization of the arylindenopyrimidines led to a number of amide, ether, and amino analogs having comparable in vitro and in vivo activity.
View Article and Find Full Text PDFChelation provides a powerful means of stereocontrol in alkylations of metalated nitriles. Doubly deprotonating a series of cyclic beta-hydroxynitriles triggers cyclizations that implicate metalated nitrile intermediates having configurations imposed by chelation with an adjacent, chiral lithium alkoxide. Identifying chelation as a general stereocontrol element explains several previously anomalous alkylations of metalated nitriles and provides a potential solution to the long-standing difficulty of synthesizing trans-hydrindanes.
View Article and Find Full Text PDF[reaction: see text] A practical total synthesis of Bengamides B, E, and Z from a common polyol intermediate is described. Consecutive aldol condensations afford a protected polyol thioester side chain suitable for coupling to the Bengamides. A novel chiral phase transfer catalyzed enantioselective alkylation affords the more highly functionalized amino caprolactams required for Bengamides B and Z.
View Article and Find Full Text PDFAlpha,beta-unsaturated nitriles are readily synthesized by eliminating MgO from beta-hydroxynitriles. Deprotonating acyclic, and cyclic, beta-hydroxynitriles with excess MeMgCl smoothly generates dianion intermediates that eject MgO with concurrent formation of alpha,beta-unsaturated nitriles. Alternatively, sequential addition of lithioacetonitrile and MgBr(2) to aldehydes and ketones generates magnesium alkoxides in situ that eliminate MgO upon addition of MeMgCl.
View Article and Find Full Text PDFExtensive cyclizations in hydrocarbon and polar solvents demonstrate a profound solvent sensitivity for intramolecular nitrile anion alkylations. S(N)i cyclizations enforce very precise steric constraints in the transition state, allowing correlation of the cyclization stereochemistry with the orbital orientation of the nitrile anion. Collectively the cyclizations suggest a continuum of nitrile anion transition states, varying from planar to fully pyramidal, that selectively cyclize to cis- and trans-decalins, respectively.
View Article and Find Full Text PDF