Publications by authors named "Brian Sardella"

Reproductive factors are well-established risk factors for breast cancer. The prevailing hypothesis suggested that stem cell changes may be the key underlying mechanisms, but epidemiological evidence has been notably scarce. Herein we examined the relationship between reproductive risk factors and the expression of well-established stem cell markers CD44, CD24, and ALDH1A1 in benign breast biopsy non-cancerous samples.

View Article and Find Full Text PDF

Mozambique tilapia have been shown to be incredibly stress tolerant with respect to environmental salinity, hypoxia, and ammonia concentrations. Temperature challenges to this species have shown that they have difficulty with cold acclimation. The purpose of this study was to measure the effects of acclimation temperature and salinity on the thermal tolerance of Mozambique tilapia as assessed by critical thermal maxima (CT) and critical thermal minima (CT).

View Article and Find Full Text PDF

The gill is widely accepted to have played a key role in the adaptive radiation of early vertebrates by supplanting the skin as the dominant site of gas exchange. However, in the most basal extant craniates, the hagfishes, gills play only a minor role in gas exchange. In contrast, we found hagfish gills to be associated with a tremendous capacity for acid-base regulation.

View Article and Find Full Text PDF

The green sturgeon (Acipenser medirostris) is an anadromous species with a distinct population segment in the San Francisco Bay-Sacramento River Delta that is currently listed as threatened. Although this species is able to tolerate salinity challenges as soon as 6 mo posthatch, its ability to deal with unpredictable salinity fluctuations remains unknown. Global climate change is predicted to result in large freshwater (FW) flushes through the estuary during winter and greater tidal influence during the summer.

View Article and Find Full Text PDF

The green sturgeon is a long-lived, highly migratory species with populations that are currently listed as threatened. Their anadromous life history requires that they make osmo- and ionoregulatory adjustments in order to maintain a consistent internal milieu as they move between fresh-, brackish-, and seawater. We acclimated juvenile green sturgeon (121 +/- 10.

View Article and Find Full Text PDF

We have developed a technique for immunocytochemistry of fish gill cells that we used to quantify tilapia (Oreochromis mossambicus) mitochondria-rich cells (MRC) and other gill cells (non-MRC) within different cell cycle phases by laser scanning cytometry. Gill cells fixed on coverslips were triple stained with propidium iodide to distinguish G1 vs. G2 phases, Ser10-phosphorylated histone H3 antibody to label mitotic cells, and Na(+)/K(+) ATPase antibody to label MRC.

View Article and Find Full Text PDF

We investigated the effect of environmental salinity on the upper thermal tolerance of green sturgeon (Acipenser medirostris), a threatened species whose natural habitat is vulnerable to temperature and salinity variation as a result of global climate change. Freshwater (FW)-reared sturgeon were gradually acclimated to salinities representing FW, estuary water (EST), or San Francisco Bay water (BAY) at 18 degrees C, and their critical thermal maximum (CTMax) was measured by increasing temperature 0.3 degrees C/min until branchial ventilation ceased.

View Article and Find Full Text PDF

We examined the metabolic responses of the hypoxia-tolerant killifish (Fundulus heteroclitus) to 15 h of severe hypoxia and recovery with emphasis on muscle substrate usage and the regulation of the mitochondrial protein pyruvate dehydrogenase (PDH), which controls carbohydrate oxidation. Hypoxia survival involved a transient activation of substrate-level phosphorylation in muscle (decreases in [creatine phospate] and increases in [lactate]) during which time mechanisms to reduce overall ATP consumption were initiated. This metabolic transition did not affect total cellular [ATP], but had an impact on cellular energy status as indicated by large decreases in [ATP]/[ADP(free)] and [ATP]/[AMP(free)] and a significant loss of phosphorylation potential and Gibbs free energy of ATP hydrolysis (DeltafG').

View Article and Find Full Text PDF

California Mozambique tilapia (Oreochromis mossambicus x O. urolepis hornorum) are extremely saline tolerant and have been previously shown to reduce whole-animal oxygen consumption rate (MO(2)) upon exposures to salinities greater than that of seawater (SW). In this study tilapia were acclimated to 15, 30, 45, 60 and 75 g/L salinity for 1, 5, 14, or 28 days.

View Article and Find Full Text PDF

The Mozambique tilapia (Oreochromis mossambicus) is prone to osmoregulatory disturbances when faced with fluctuating ambient temperatures. To investigate the underlying causes of this phenomenon, freshwater (FW)- and seawater (SW)-acclimated tilapia were transferred to 15, 25, or 35 degrees C for 2 weeks, and along with typically used indicators of osmoregulatory status [plasma osmolality and branchial and intestinal specific Na(+), K(+)-ATPase (NKA) activity], we used tissue microarrays (TMA) and laser-scanning cytometry (LSC) to characterize the effects of temperature acclimation. Tissue microarrays were stained with fluorescently labeled anti-Na(+), K(+)-ATPase antibodies that allowed for the quantification of NKA abundance per unit area within individual branchial mitochondria-rich cells (MRCs) as well as sections of renal tissue.

View Article and Find Full Text PDF

The effects of temperature on the salinity tolerance of Mozambique-Wami tilapia hybrids (Oreochromis mossambicus x O. urolepis hornorum) were investigated by transferring 35 g/l, 25 degrees C-acclimated fish to 35, 43, 51 or 60 g/l salinity at 15, 25 or 35 degrees C for 24 h, and by assaying gill tissue for branchial Na(+), K(+)-ATPase activity at the three temperatures after acclimating the fish to 15, 25 or 35 degrees C for 2 weeks. Tilapia survived all salinities at 25 and 35 degrees C; however, at 15 degrees C, mortality was 85.

View Article and Find Full Text PDF

The salinity tolerance of the 'California' Mozambique tilapia (Oreochromis mossambicus x O. urolepis hornorum), a current inhabitant of the hypersaline Salton Sea in California, USA, was investigated to identify osmoregulatory stress indicators for possible use in developing a model of salinity tolerance. Seawater-acclimated (35 g l(-1)) tilapia hybrids were exposed to salinities from 35-95 g l(-1), using gradual and direct transfer protocols, and physiological (plasma osmolality, [Na+], [Cl-], oxygen consumption, drinking rate, hematocrit, mean cell hemoglobin concentration, and muscle water content), biochemical (Na+, K(+)-ATPase) and morphological (number of mature, accessory, immature and apoptotic chloride cells) indicators of osmoregulatory stress were measured.

View Article and Find Full Text PDF