Am J Physiol Cell Physiol
November 2021
The precise matching of blood flow to skeletal muscle during exercise remains an important area of investigation. Release of adenosine triphosphate (ATP) from red blood cells (RBCs) is postulated as a mediator of peripheral vascular tone in response to shear stress, hypoxia, and mechanical deformation. We tested the following hypotheses: ) RBCs of different densities contain different quantities of ATP; ) hypoxia is a stimulus for ATP release from RBCs; and ) hypoxic ATP release from RBCs is related to RBC lysis.
View Article and Find Full Text PDFThe ability to monitor protein biomarkers continuously and in real-time would significantly advance the precision of medicine. Current protein-detection techniques, however, including ELISA and lateral flow assays, provide only time-delayed, single-time-point measurements, limiting their ability to guide prompt responses to rapidly evolving, life-threatening conditions. In response, here we present an electrochemical aptamer-based sensor (EAB) that supports high-frequency, real-time biomarker measurements.
View Article and Find Full Text PDFKey Points: Increased plasma nitrite concentrations may have beneficial effects on skeletal muscle function. The physiological basis explaining these observations has not been clearly defined and it may involve positive effects on muscle contraction force, microvascular O delivery and skeletal muscle oxidative metabolism. In the isolated canine gastrocnemius model, we evaluated the effects of acute nitrite infusion on muscle force and skeletal muscle oxidative metabolism.
View Article and Find Full Text PDFFor the author R. Mac Thompson, the first name should be R. Mac and the last name should be Thompson.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
August 2018
It is generally assumed that relaxation of arteriolar vascular smooth muscle occurs through hyperpolarization of the cell membrane, reduction in intracellular Ca concentration, and activation of myosin light chain phosphatase/inactivation of myosin light chain kinase. We hypothesized that vasodilation is related to depolymerization of F-actin. Cremaster muscles were dissected in rats under pentobarbital sodium anesthesia (50 mg/kg).
View Article and Find Full Text PDFConventional treatments have failed to improve the prognosis of heart failure with preserved ejection fraction (HFpEF) patients. Thus, the purpose of this study was to determine the therapeutic efficacy of chronic interval exercise training (IT) on large-conductance Ca-activated K (BK) channel-mediated coronary vascular function in heart failure. We hypothesized that chronic interval exercise training would attenuate pressure overload-induced impairments to coronary BK channel-mediated function.
View Article and Find Full Text PDFExercise improves clinical outcomes in patients diagnosed with heart failure with reduced ejection fraction (HFrEF), in part via beneficial effects on cardiomyocyte Ca cycling during excitation-contraction coupling (ECC). However, limited data exist regarding the effects of exercise training on cardiomyocyte function in patients diagnosed with heart failure with preserved ejection fraction (HFpEF). The purpose of this study was to investigate cardiomyocyte Ca handling and contractile function following chronic low-intensity exercise training in aortic-banded miniature swine and test the hypothesis that low-intensity exercise improves cardiomyocyte function in a large animal model of pressure overload.
View Article and Find Full Text PDFLactate (La) has long been at the center of controversy in research, clinical, and athletic settings. Since its discovery in 1780, La has often been erroneously viewed as simply a hypoxic waste product with multiple deleterious effects. Not until the 1980s, with the introduction of the cell-to-cell lactate shuttle did a paradigm shift in our understanding of the role of La in metabolism begin.
View Article and Find Full Text PDFThe Rational Addiction (RA) model is increasingly often estimated using individual level panel data with mixed results; in particular, with regard to the implied rate of time discount. This paper suggests that the odd values of the rate of discount frequently found in the literature may in fact be a consequence of the saddle-point dynamics associated with individual level inter-temporal optimization problems. We report the results of Monte Carlo experiments estimating RA-type difference equations that seem to suggest the possibility that the presence of both a stable and an unstable root in the dynamic process may create serious problems for the estimation of RA equations.
View Article and Find Full Text PDFDuring cardiac surgery, specifically sternotomy, cranial hypoperfusion is linked to cerebral ischemia, increased risk of perioperative watershed stroke, and other neurocognitive complications. The purpose of this study was to retrospectively examine the effect of sex hormones in females and exercise prehabilitation in males on median sternotomy-induced changes in cranial perfusion in a large animal model of heart failure. Cranial blood flow (CBF) before and 10 and 60 min poststernotomy was analyzed in eight groups of Yucatan mini-swine: female control, aortic banded, ovariectomized, and ovariectomized + aortic banded; male control, aortic banded, aortic banded + continuous exercise trained, and aortic banded + interval exercise trained.
View Article and Find Full Text PDFPurpose: The study aimed to examine the relationship between near-infrared spectroscopy (NIRS) signals and venous hemoglobin oxygen saturation (O2Hb%) and venous oxygen concentration (CvO2).
Methods: Gastrocnemius muscles (GS) in six dogs were surgically isolated and pump perfused. NIRS signals were recorded, and venous blood samples were collected at constant flow rates (control flow, high flow, and low flow) at rest as well as during electrically stimulated tetanic muscle contractions at rates of one contraction per 2 s (1/2 s) and two contractions per 3 s (2/3 s).
Background: Cognitive impairment in the setting of heart failure with preserved ejection fraction remains poorly understood. Using aortic-banded miniature swine displaying pathological features of human heart failure with preserved ejection fraction, we tested the hypothesis that increased carotid artery stiffness and altered carotid blood flow control are associated with impaired memory independent of decreased cardiac output. Furthermore, we hypothesized that chronic exercise prevents carotid artery vascular restructuring and preserves normal blood flow control and cognition in heart failure with preserved ejection fraction.
View Article and Find Full Text PDFBackground: Cyclic guanosine monophosphate-protein kinase G-phosphodiesterase 5 signaling may be disturbed in heart failure (HF) with preserved ejection fraction, contributing to cardiac remodeling and dysfunction. The purpose of this study was to manipulate cyclic guanosine monophosphate signaling using the dipeptidyl-peptidase 4 inhibitor saxagliptin and phosphodiesterase 5 inhibitor tadalafil. We hypothesized that preservation of cyclic guanosine monophosphate cGMP signaling would attenuate pathological cardiac remodeling and improve left ventricular (LV) function.
View Article and Find Full Text PDFWe examined if supplementing trained cyclists (32 ± 2 year, 77.8 ± 2.6 kg, and 7.
View Article and Find Full Text PDFCompared with resting conditions, during incremental exercise, cardiac output in humans is elevated from ~5 to 25 L min(-1). In conjunction with this increase, the proportion of cardiac output directed toward skeletal muscle increases from ~20% to 85%, while blood flow to cardiac muscle increases 500% and blood flow to specific brain structures increases nearly 200%. Based on existing evidence, researchers believe that blood flow in these tissues is matched to the increases in metabolic rate during exercise.
View Article and Find Full Text PDFBackground: Phosphatidic acid (PA) is a diacyl-glycerophospholipid that acts as a signaling molecule in numerous cellular processes. Recently, PA has been proposed to stimulate skeletal muscle protein accretion, but mechanistic studies are lacking. Furthermore, it is unknown whether co-ingesting PA with other leucine-containing ingredients can enhance intramuscular anabolic signaling mechanisms.
View Article and Find Full Text PDFBackground: We examined the acute effects of different dietary protein sources (0.19 g, dissolved in 1 ml of water) on skeletal muscle, adipose tissue and hypothalamic satiety-related markers in fasted, male Wistar rats (~250 g).
Methods: Oral gavage treatments included: a) whey protein concentrate (WPC, n = 15); b) 70:30 hydrolyzed whey-to-hydrolyzed egg albumin (70 W/30E, n = 15); c) 50 W/50E (n = 15); d) 30 W/70E (n = 15); and e) 1 ml of water with no protein as a fasting control (CTL, n = 14).
Through much of the history of metabolism, lactate (La(-)) has been considered merely a dead-end waste product during periods of dysoxia. Congruently, the end product of glycolysis has been viewed dichotomously: pyruvate in the presence of adequate oxygenation, La(-) in the absence of adequate oxygenation. In contrast, given the near-equilibrium nature of the lactate dehydrogenase (LDH) reaction and that LDH has a much higher activity than the putative regulatory enzymes of the glycolytic and oxidative pathways, we contend that La(-) is always the end product of glycolysis.
View Article and Find Full Text PDFBackground: The purpose of this study was to examine if L-leucine (Leu), β-hydroxy-β-methylbutyrate (HMB), or creatine monohydrate (Crea) prevented potential atrophic effects of myostatin (MSTN) on differentiated C2C12 myotubes.
Methods: After four days of differentiation, myotubes were treated with MSTN (10 ng/ml) for two additional days and four treatment groups were studied: 1) 3x per day 10 mM Leu, 2) 3x per day 10 mM HMB, 3) 3x per day 10 mM Crea, 4) DM only. Myotubes treated with DM without MSTN were analyzed as the control condition (DM/CTL).
Oxygen uptake kinetics (τVO2) are slowed when exercise is initiated from a raised metabolic rate. Whether this reflects the recruitment of muscle fibres differing in oxidative capacity, or slowed blood flow (Q) kinetics is unclear. This study determined τVO2 in canine muscle in situ, with experimental control over muscle activation and Q during contractions initiated from rest and a raised metabolic rate.
View Article and Find Full Text PDFA sensor capable of continuously measuring specific molecules in the bloodstream in vivo would give clinicians a valuable window into patients' health and their response to therapeutics. Such technology would enable truly personalized medicine, wherein therapeutic agents could be tailored with optimal doses for each patient to maximize efficacy and minimize side effects. Unfortunately, continuous, real-time measurement is currently only possible for a handful of targets, such as glucose, lactose, and oxygen, and the few existing platforms for continuous measurement are not generalizable for the monitoring of other analytes, such as small-molecule therapeutics.
View Article and Find Full Text PDFSalmonella is a zoonotic pathogen that poses a considerable public health and economic burden in the United States and worldwide. Resultant human diseases range from enterocolitis to bacteremia to sepsis and are acutely dependent on the particular serovar of Salmonella enterica subsp. enterica, which comprises over 99% of human-pathogenic S.
View Article and Find Full Text PDFAffinity reagents that bind to specific molecular targets are an essential tool for both diagnostics and targeted therapeutics. There is a particular need for advanced technologies for the generation of reagents that specifically target cell-surface markers, because transmembrane proteins are notoriously difficult to express in recombinant form. We have previously shown that microfluidics offers many advantages for generating affinity reagents against purified protein targets, and we have now significantly extended this approach to achieve successful in vitro selection of T7 phage-displayed peptides that recognize markers expressed on live, adherent cells within a microfluidic channel.
View Article and Find Full Text PDFEffective systems for rapid, sequence-specific nucleic acid detection at the point of care would be valuable for a wide variety of applications, including clinical diagnostics, food safety, forensics, and environmental monitoring. Electrochemical detection offers many advantages as a basis for such platforms, including portability and ready integration with electronics. Toward this end, we report the Integrated Microfluidic Electrochemical DNA (IMED) sensor, which combines three key biochemical functionalities--symmetric PCR, enzymatic single-stranded DNA generation, and sequence-specific electrochemical detection--in a disposable, monolithic chip.
View Article and Find Full Text PDF