Publications by authors named "Brian Ratliff"

Article Synopsis
  • Maternal undernutrition leads to low birth weight in neonates, which can increase the risk for high blood pressure and kidney disease later in life, though the exact reasons are not fully understood.
  • The study utilized a mouse model to examine factors like oxidative stress and vascular function in low birth weight mice after one year, measuring various health indicators and testing different pharmacological treatments.
  • Results showed that low birth weight mice had higher blood pressure and decreased kidney function, but administration of specific drugs improved their conditions, indicating that therapies targeting oxidative stress and vascular function might mitigate some long-term health issues.
View Article and Find Full Text PDF

(1) Background: Arterial hypertension (HTN) is one of the most relevant cardiovascular risk factors. Nowadays multiple pharmaceutical treatment options exist with novel interventional methods (e.g.

View Article and Find Full Text PDF

Maternal undernutrition during pregnancy (MUN) often leads to low birth weight (LBW) neonates that have a reduced total nephron endowment, leaving these neonates susceptible to kidney disease throughout their lives. For reasons unknown, these LBW neonates have impaired kidney development due to a severe reduction in renal SIX2 stem cells during nephrogenesis. Using a mouse model of MUN, we investigated SIX2 stem cell reduction in the LBW neonate.

View Article and Find Full Text PDF

Maternal undernutrition (MUN) during pregnancy leads to low-birth weight (LBW) neonates that have a reduced kidney nephron endowment and higher morbidity as adults. Using a severe combined caloric and protein-restricted mouse model of MUN to generate LBW mice, we examined the progression of renal insufficiency in LBW adults. Through 6 mo of age, LBW males experienced greater albuminuria (ELISA analysis), a more rapid onset of glomerular hypertrophy, and a worse survival rate than LBW females.

View Article and Find Full Text PDF

Background: Our laboratory has previously demonstrated that Sirt1endo-/- mice show endothelial dysfunction and exaggerated renal fibrosis, whereas mice with silenced endothelial transforming growth factor beta (TGF-β) signaling are resistant to fibrogenic signals. Considering the fact that the only difference between these mutant mice is confined to the vascular endothelium, this indicates that secreted substances contribute to these contrasting responses.

Methods: We performed an unbiased proteomic analysis of the secretome of renal microvascular endothelial cells (RMVECs) isolated from these two mutants.

View Article and Find Full Text PDF

Syndecan-4 (Synd4) is a member of the membrane-spanning, glycocalyx-forming proteoglycan family. It has been suggested that Synd4 participates in renal fibrosis. We compared wild-type and fibrosis-prone endothelial sirtuin 1-deficient (Sirt1) mice, the latter being a model of global endothelial dysfunction.

View Article and Find Full Text PDF

During sepsis, the alarmin HMGB1 is released from tissues and promotes systemic inflammation that results in multi-organ damage, with the kidney particularly susceptible to injury. The severity of inflammation and pro-damage signaling mediated by HMGB1 appears to be dependent on the alarmin's redox state. Therefore, we examined HMGB1 redox in kidney cells during sepsis.

View Article and Find Full Text PDF

BackgroundLow birth weight (LBW) neonates have impaired kidney development that leaves them susceptible to kidney disease and hypertension during adulthood. The study here identifies events that blunt nephrogenesis and kidney development in the murine LBW neonate.MethodsWe examined survival, kidney development, GFR, gene expression, and cyto-/chemokines in the LBW offspring of malnourished (caloric and protein-restricted) pregnant mice.

View Article and Find Full Text PDF

Accumulation of myofibroblasts is a hallmark of renal fibrosis. A significant proportion of myofibroblasts has been reported to originate via endothelial-mesenchymal transition. We initially hypothesized that exposing myofibroblasts to the extract of endothelial progenitor cells (EPCs) could reverse this transition.

View Article and Find Full Text PDF

Significance: A common link between all forms of acute and chronic kidney injuries, regardless of species, is enhanced generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) during injury/disease progression. While low levels of ROS and RNS are required for prosurvival signaling, cell proliferation and growth, and vasoreactivity regulation, an imbalance of ROS and RNS generation and elimination leads to inflammation, cell death, tissue damage, and disease/injury progression.

Recent Advances: Many aspects of renal oxidative stress still require investigation, including clarification of the mechanisms which prompt ROS/RNS generation and subsequent renal damage.

View Article and Find Full Text PDF

Sepsis is a systemic inflammatory syndrome induced by bacterial infection that can lead to multiorgan failure. Endothelial surface glycocalyx (ESG) decorating the inner wall of blood vessels is a regulator of multiple vascular functions. Here, we tested a hypothesis that patchy degradation of ESG occurs early in sepsis and is a result of exocytosis of lysosome-related organelles.

View Article and Find Full Text PDF

Unlabelled: : We previously reported the delivery of endothelial progenitor cells (EPCs) embedded in hyaluronic acid-based (HA)-hydrogels protects renal function during acute kidney injury (AKI) and promotes angiogenesis. We attempted to further ameliorate renal dysfunction by coembedding EPCs with renal mesenchymal stem cells (MSCs), while examining their paracrine influence on cytokine/chemokine release and proinflammatory macrophages. A live/dead assay determined whether EPC-MSC coculturing improved viability during lipopolysaccharide (LPS) treatment, and HA-hydrogel-embedded delivery of cells to LPS-induced AKI mice was assessed for effects on mean arterial pressure (MAP), renal blood flow (RBF), circulating cytokines/chemokines, serum creatinine, proteinuria, and angiogenesis (femoral ligation).

View Article and Find Full Text PDF

We are witnessing the emergence of a novel type of biological regulation, namely, the communication between cells via their secreted substances, the secretome. This brief overview is based on the available published data and our own experience. We discuss three vignettes illustrating the importance of communication via the secretome: (1) the secretome of stem cells and its effects in sepsis and systemic inflammatory response; (2) the profibrotic secretomes partially responsible for development of fibrotic complications; and (3) the contribution of senescence-associated secretory products to the propagation of the senescence phenotype.

View Article and Find Full Text PDF

We sought to characterize a minor renal cryoinjury that allows investigation into renal damage processes and subsequent endogenous repair mechanisms. To achieve this, we induced a small cryoinjury to mice, in which the transient superficial application of a liquid nitrogen-cooled cryoprobe to the exposed kidney induces a localized lesion that did not impair renal function. The resulting cryoinjury was examined by immunohistochemistry and Laser-Doppler flowmetry.

View Article and Find Full Text PDF

High-mobility group box 1 (HMGB1) undergoes acetylation, nuclear-to-cytoplasmic translocation, and release from stressed kidneys, unleashing a signaling cascade of events leading to systemic inflammation. Here, we tested whether the deacetylase activity of Sirtuin1 (SIRT1) participates in regulating nuclear retention of HMGB1 to ultimately modulate damage signaling initiated by HMGB1 secretion during stress. When immunoprecipitated acetylated HMGB1 was incubated with SIRT1, HMGB1 acetylation decreased by 57%.

View Article and Find Full Text PDF

We recently demonstrated the use of in vitro expanded kidney-derived mesenchymal stem cells (KMSC) protected peritubular capillary endothelial cells in acute renal ischemia-reperfusion injury. Herein, we isolated and characterized microparticles (MPs) from KMSC. We investigated their in vitro biologic effects on human endothelial cells and in vivo renoprotective effects in acute ischemia-reperfusion renal injury.

View Article and Find Full Text PDF

NFAT5 is a transcription factor that protects the kidney from hypertonic stress and also is activated by hypoxia. We hypothesized that NFAT5 mitigates the extent of renal damage induced by ischemia-reperfusion injury (IRI). Mice were subjected to IRI by unilateral clamping of the left renal pedicle for 30 minutes followed by reperfusion.

View Article and Find Full Text PDF

Sirtuin 1 (SIRT1) depletion in vascular endothelial cells mediates endothelial dysfunction and premature senescence in diverse cardiovascular and renal diseases. However, the molecular mechanisms underlying these pathologic effects remain unclear. Here, we examined the phenotype of a mouse model of vascular senescence created by genetically ablating exon 4 of Sirt1 in endothelial cells (Sirt1(endo-/-)).

View Article and Find Full Text PDF

Endothelial Cell Dysfunction (ECD) is a recognized harbinger of a host of chronic cardiovascular diseases. Using a mouse model of ECD triggered by treatment with L-Nω-methylarginine (L-NMMA), we previously demonstrated that renal microvasculature displays a perturbed protein profile, including diminished expression of two key enzymes of the Krebs cycle associated with a Warburg-type suppression of mitochondrial metabolism. We hypothesized that supplementation with L-glutamine (GLN), that can enter the Krebs cycle downstream this enzymatic bottleneck, would normalize vascular function and alleviate mitochondrial dysfunction.

View Article and Find Full Text PDF

Adoptive transfer of stem cells has shown potential as an effective treatment for acute kidney injury (AKI). The current strategy for adoptive transfer of stem cells is by intravenous injection. However, this conventional method of stem cell delivery is riddled with problems causing reduced efficacy of the therapeutic potential of delivered stem cells.

View Article and Find Full Text PDF

The list of signals sent by an injured organ to systemic circulation, so-called danger signals, is growing to include multiple metabolites and secreted moieties, thus revealing a highly complex and integrated network of interlinked systemic proinflammatory and proregenerative messages. Emerging new data indicate that, apart from the well established local inflammatory response to AKI, danger signaling unleashes a cascade of precisely timed, interdependent, and intensity-gradated mediators responsible for development of the systemic inflammatory response. This fledgling realization of the importance of the systemic inflammatory response to the localized injury and inflammation is at the core of this brief overview.

View Article and Find Full Text PDF

Background: The assessment of hydration status remains a challenging task in hemodialysis (HD) management. There are only limited data available on the relevance of clinical decisions in the estimation of dialysis overhydration (OH). The objective of this study was to examine the significance of clinical judgment in the assessment of pre-dialysis OH.

View Article and Find Full Text PDF

Aims: We examined that (a) how the endotoxic stress affects peroxisomal function and autophagic degradation of peroxisomes-pexophagy, (b) how a superimposed dysfunction of lysosomes and pexophagy modifies responses to lipopolysaccharide (LPS), and (c) the mechanisms of peroxisomal contribution to renal injury. To accomplish this, we used lysosome-defective Lyst-mice in vivo and primary endothelial cells in vitro, and compared the responses with wild-type (WT) littermates.

Results: LPS induced pexophagic degradation, followed by proliferation of peroxisomes in WT mice, which was abolished in Lyst-mice.

View Article and Find Full Text PDF

Factors that initiate cellular damage and trigger the inflammatory response cascade and renal injury are not completely understood after renal ischemia-reperfusion injury (IRI). High-mobility group box-1 protein (HMGB1) is a damage-associated molecular pattern molecule that binds to chromatin, but upon signaling undergoes nuclear-cytoplasmic translocation and release from cells. Immunohistochemical and Western blot analysis identified HMGB1 nuclear-cytoplasmic translocation and release from renal cells (particularly vascular and tubular cells) into the venous circulation after IRI.

View Article and Find Full Text PDF

Introduction: Nitric oxide (NO) vasodilation critically modulates renal hemodynamics in the neonate compared with the adult. Based on the postnatal expression pattern of renal neuronal nitric oxide synthase (nNOS), the hypothesis was that nNOS is the major NOS isoform regulating renal hemodynamics in the immature, but not mature, kidney.

Results: NOS inhibitors did not alter mean arterial pressure (MAP) in either group.

View Article and Find Full Text PDF

Synopsis of recent research by authors named "Brian Ratliff"

  • - Brian Ratliff's research predominantly focuses on kidney development and dysfunction, particularly in relation to maternal undernutrition and its long-term effects on low birth weight (LBW) neonates. His studies highlight mechanisms that impair renal nephrogenesis and contribute to future kidney disease risks.
  • - Ratliff has also explored the implications of endothelial dysfunction in cardiovascular health, identifying syndecan-4 as a key marker and investigating its role in renal fibrosis and fibroblast activation through aberrant endothelial secretome.
  • - His work further delves into oxidative stress and its relationships with kidney injury, emphasizing how abnormal reactive oxygen species and redox states during conditions like sepsis lead to significant damage in renal tissues.