Surface coating is one of the techniques used to improve the electrochemical performance and enhance the resistance against decomposition of cathode materials in lithium-ion batteries. Despite several experimental studies addressing the surface coating of secondary Li-ion batteries using α-AlO, the reactivity of the material toward the electrolyte components is not yet fully understood. Here, we have employed calculations based on the density functional theory to investigate the adsorption of the organic solvent ethylene carbonate (EC) on the major α-AlO(0001) surface.
View Article and Find Full Text PDFUnderstanding the surface reactivity of the commercial cathode material LiMnO towards the electrolyte is important to improve the cycling performance of secondary lithium-ion batteries and to prevent manganese dissolution. In this work, we have employed spin-polarized density functional theory calculations with on-site Coulomb interactions and long-range dispersion corrections [DFT+U-D3-(BJ)] to investigate the adsorption of the electrolyte component ethylene carbonate (EC) onto the (001), (011) and (111) surfaces of the fully lithiated and partially delithiated LiMnO spinel (0.000 < x < 0.
View Article and Find Full Text PDF