ACS Appl Mater Interfaces
May 2019
A common problem which we encounter on a daily basis is dispensing of yield stress fluids such as condiments, lotions, toothpaste, etc. from containers. Beyond consumer products, assuring the flow of yield stress fluids such as crude oil, mud, blood, paint, pharmaceutical products, and others, is essential for the respective industries.
View Article and Find Full Text PDFMany natural surfaces such as butterfly wings, beetles' backs, and rice leaves exhibit anisotropic liquid adhesion; this is of fundamental interest and is important to applications including self-cleaning surfaces, microfluidics, and phase change energy conversion. Researchers have sought to mimic the anisotropic adhesion of butterfly wings using rigid surface textures, though natural butterfly scales are sufficiently compliant to be deflected by capillary forces exerted by drops. Here, inspired by the flexible scales of the Morpho aega butterfly wing, synthetic surfaces coated with flexible carbon nanotube (CNT) microscales with anisotropic drop adhesion properties are fabricated.
View Article and Find Full Text PDFLubricant-impregnated surfaces (LIS), where micro/nanotextured surfaces are impregnated with lubricating liquids, have received significant attention for their robust, superslippery properties. In this study, we systematically demonstrate the potential for LIS to reduce drag in laminar flows. We present a scaling model that incorporates the viscosity of the lubricant and elucidates the dependence of drag reduction on the ratio of the viscosity of the working fluid to that of the lubricant.
View Article and Find Full Text PDFMembranes that separate oil-water mixtures based on contrasting wetting properties have recently received significant attention. Separation of nanoemulsions, i.e.
View Article and Find Full Text PDF