Publications by authors named "Brian R Patton"

Multichannel, infinite-conjugate optical systems easily allow implementation of multiple image paths and imaging modes into a single microscope. Traditional optical alignment methods which rely on additional hardware are not always simple to implement, particularly in compact open-source microscope designs. We present here an alignment algorithm and process to position the lenses and cameras in a microscope using only image magnification measurements.

View Article and Find Full Text PDF

We report on a 3D printed microscope, based on a design by the Openflexure project, that uses low cost components to perform fluorescence imaging. The system is sufficiently sensitive and mechanically stable to allow the use of the Super Resolution Radial Fluctuations algorithm to obtain images with resolution better than the diffraction limit. Due to the low-cost components, the entire system can be built for approximately $1200.

View Article and Find Full Text PDF

Phase microscopy allows stain-free imaging of transparent biological samples. One technique, using the transport of intensity equation (TIE), can be performed without dedicated hardware by simply processing pairs of images taken at known spacings within the sample. The resulting TIE images are quantitative phase maps of unstained biological samples.

View Article and Find Full Text PDF

Particles of diamond in the 5-100 nm size range, known as nanodiamond (ND), have shown promise as robust fluorophores for optical imaging. We demonstrate here that, due to their photostability, they are not only suitable for two-photon imaging, but also allow significant resolution enhancement when combined with computational super-resolution techniques. We observe a resolution of 42.

View Article and Find Full Text PDF

When imaging through tissue, the optical inhomogeneities of the sample generate aberrations that can prevent effective Stimulated Emission Depletion (STED) imaging. This is particularly problematic for 3D-enhanced STED. We present here an adaptive optics implementation that incorporates two adaptive optic elements to enable correction in all beam paths, allowing performance improvement in thick tissue samples.

View Article and Find Full Text PDF

The performance of a stimulated emission depletion (STED) microscope depends critically upon the pupil plane phase mask that is used to shape the depletion focus. Misalignments of the mask create unwanted distortions of the depletion focus to the detriment of image quality. It is shown how the phase errors introduced by a misplaced mask are similar to coma aberrations.

View Article and Find Full Text PDF

Exploring the maximum spatial resolution achievable in far-field optical imaging, we show that applying solid immersion lenses (SIL) in stimulated emission depletion (STED) microscopy addresses single spins with a resolution down to 2.4 ± 0.3 nm and with a localization precision of 0.

View Article and Find Full Text PDF

Large arrays of uniform, precisely tunable, open-access optical microcavities with mode volumes as small as 2.2 μm(3) are reported. The cavities show clear Hermite-Gauss mode structure and display finesses up to 460, in addition to quality (Q) factors in excess of 10,000.

View Article and Find Full Text PDF

We report on the design and performance of a high stability scanning confocal microscope for optical microscopy at low temperatures. By scanning the beam in a cold objective lens system, we achieve wide fields of view without compromising image quality. Photoluminescence from single nitrogen-vacancy centers in high purity diamond is used to illustrate the imaging and stability performance of the microscope.

View Article and Find Full Text PDF