Borrelia (or Borreliella) burgdorferi, the causative agent of Lyme disease, is a motile and invasive zoonotic pathogen adept at navigating between its arthropod vector and mammalian host. While motility and chemotaxis are well known to be essential for its enzootic cycle, the role of each methyl-accepting chemotaxis proteins (MCPs) in the infectious cycle of B. burgdorferi remains unclear.
View Article and Find Full Text PDFIn consideration of life in extreme environments, the effects of hydrostatic pressure on proteins at the atomic level have drawn substantial interest. Large deviations of temperature and pressure from ambient conditions can shift the free energy landscape of proteins to reveal otherwise lowly populated structural states and even promote unfolding. We report the crystal structure of the heme-containing peroxidase, cytochrome c peroxidase (CcP) at 1.
View Article and Find Full Text PDFCryptochromes (CRYs), which are signaling proteins related to DNA photolyases, play pivotal roles in sensory responses throughout biology, including growth and development, metabolic regulation, circadian rhythm entrainment and geomagnetic field sensing. This review explores the evolutionary relationships and functional diversity of cryptochromes from the perspective of their molecular structures. In general, CRY biological activities derive from their core structural architecture, which is based on a Photolyase Homology Region (PHR) and a more variable and functionally specific Cryptochrome C-terminal Extension (CCE).
View Article and Find Full Text PDFHere, we present a protocol to quantify interactions among difficult-to-express proteins from Drosophila cells using the select western blot-free tagged-protein interaction (SWFTI) assay. We describe steps for plasmid design, cell plating, protein expression, and immunoprecipitation preparation. We then detail procedures for protein labeling, gel purification, and protein quantification.
View Article and Find Full Text PDF(or ) , the causative agent of Lyme disease, is a motile and invasive zoonotic pathogen, adept at navigating between its arthropod vector and mammalian host. While motility and chemotaxis are well established as essential for its enzootic cycle, the function of methyl-accepting chemotaxis proteins (MCPs) in the infectious cycle of remains unclear. In this study, we demonstrate that MCP5, one of the most abundant MCPs in , is differentially expressed in response to environmental signals as well as at different stages of the pathogen's enzootic cycle.
View Article and Find Full Text PDFCircadian clocks are composed of transcription-translation negative feedback loops that pace rhythms of gene expression to the diurnal cycle. In the filamentous fungus the proteins requency (RQ), the RQ-interacting RNA helicase (FRH), and asein-Kinase I (CK1) form the complex that represses expression of genes activated by the white-collar complex (WCC). FRQ orchestrates key molecular interactions of the clock despite containing little predicted tertiary structure.
View Article and Find Full Text PDFCircadian rhythms are determined by cell-autonomous transcription-translation feedback loops that entrain to environmental stimuli. In the model circadian clock of , the clock is set by the light-induced degradation of the core oscillator protein timeless (TIM) by the principal light-sensor cryptochrome (CRY). The cryo-EM structure of CRY bound to TIM revealed that within the extensive CRY:TIM interface, the TIM N-terminus binds into the CRY FAD pocket, in which FAD and the associated phosphate-binding loop (PBL) undergo substantial rearrangement.
View Article and Find Full Text PDFSpirochetes cause Lyme disease, leptospirosis, syphilis, and several other human illnesses. Unlike other bacteria, spirochete flagella are enclosed within the periplasmic space where the filaments distort and push the cell body by the action of the flagellar motors. We previously demonstrated that the oral pathogen (Td) and Lyme disease pathogen (Bb) form covalent lysinoalanine (Lal) cross-links between conserved cysteine and lysine residues of the FlgE protein that composes the flagellar hook.
View Article and Find Full Text PDFAs an enzootic pathogen, the Lyme disease bacterium Borrelia burgdorferi possesses multiple copies of chemotaxis proteins, including two chemotaxis histidine kinases (CHK), CheA1 and CheA2. Our previous study showed that CheA2 is a genuine CHK that is required for chemotaxis; however, the role of CheA1 remains mysterious. This report first compares the structural features that differentiate CheA1 and CheA2 and then provides evidence to show that CheA1 is an atypical CHK that controls the virulence of B.
View Article and Find Full Text PDFUnlabelled: Spirochete bacteria cause Lyme disease, leptospirosis, syphilis and several other human illnesses. Unlike other bacteria, spirochete flagella are enclosed within the periplasmic space where the filaments distort and push the cell body by action of the flagellar motors. We previously demonstrated that the oral pathogen (Td) catalyzes the formation of covalent lysinoalanine (Lal) crosslinks between conserved cysteine and lysine residues of the FlgE protein that composes the flagellar hook.
View Article and Find Full Text PDFCircadian rhythms influence many behaviours and diseases. They arise from oscillations in gene expression caused by repressor proteins that directly inhibit transcription of their own genes. The fly circadian clock offers a valuable model for studying these processes, wherein Timeless (Tim) plays a critical role in mediating nuclear entry of the transcriptional repressor Period (Per) and the photoreceptor Cryptochrome (Cry) entrains the clock by triggering Tim degradation in light.
View Article and Find Full Text PDFElectron paramagnetic resonance (EPR) spectroscopy is a powerful tool for investigating the structure and dynamics of proteins. The introduction of paramagnetic moieties at specific positions in a protein enables precise measurement of local structure and dynamics. This technique, termed site-directed spin-labeling, has traditionally been performed using cysteine-reactive radical-containing probes.
View Article and Find Full Text PDFThe link between cofactor binding and protein activity is well-established. However, how cofactor interactions modulate folding of large proteins remains unknown. We use optical tweezers, clustering and global fitting to dissect the folding mechanism of Drosophila cryptochrome (dCRY), a 542-residue protein that binds FAD, one of the most chemically and structurally complex cofactors in nature.
View Article and Find Full Text PDFBacterial chemoreceptors regulate the cytosolic multidomain histidine kinase CheA through largely unknown mechanisms. Residue substitutions in the peptide linkers that connect the P4 kinase domain to the P3 dimerization and P5 regulatory domain affect CheA basal activity and activation. To understand the role that these linkers play in CheA activity, the P3-to-P4 linker (L3) and P4-to-P5 linker (L4) were extended and altered in variants of () CheA.
View Article and Find Full Text PDFThe Per-Arnt-Sim (PAS; named for the representative proteins: Period, Aryl hydrocarbon receptor nuclear translocator protein and Single-minded) domain of the dimeric Escherichia coli aerotaxis receptor Aer monitors cellular respiration through a redox-sensitive flavin adenine dinucleotide (FAD) cofactor. Conformational shifts in the PAS domain instigated by the oxidized FAD (FAD)/FAD anionic semiquinone (FAD) redox couple traverse the HAMP (histidine kinases, adenylate cyclases, methyl-accepting chemotaxis proteins, and phosphatases) and kinase control domains of the Aer dimer to regulate CheA kinase activity. The PAS domain of Aer is unstable and has not been previously purified.
View Article and Find Full Text PDFActa Crystallogr D Struct Biol
August 2022
Fixed-target serial crystallography allows the high-throughput collection of diffraction data from small crystals at room temperature. This methodology is particularly useful for difficult samples that have sensitivity to radiation damage or intolerance to cryoprotection measures; fixed-target methods also have the added benefit of low sample consumption. Here, this method is applied to the structure determination of the circadian photoreceptor cryptochrome (CRY), previous structures of which have been determined at cryogenic temperature.
View Article and Find Full Text PDFCryptochrome (CRY) entrains the fly circadian clock by binding to Timeless (TIM) in light. Undocking of a helical C-terminal tail (CTT) in response to photoreduction of the CRY flavin cofactor gates TIM recognition. We present a generally applicable select western-blot-free tagged-protein interaction (SWFTI) assay that allowed the quantification of CRY binding to TIM in dark and light.
View Article and Find Full Text PDFElectron transport through aromatic species (especially tryptophan and tyrosine) plays a central role in water splitting, redox signaling, oxidative damage protection, and bioenergetics. The cytochrome peroxidase (CcP)-cytochrome (Cc) complex (CcP:Cc) is used widely to study interprotein electron transfer (ET) mechanisms. Tryptophan 191 (Trp191) of CcP supports hole hopping charge recombination in the CcP:Cc complex.
View Article and Find Full Text PDFAll radical -adenosylmethionine (radical-SAM) enzymes, including the noncanonical radical-SAM enzyme diphthamide biosynthetic enzyme Dph1-Dph2, require at least one [4Fe-4S](Cys) cluster for activity. It is well-known in the radical-SAM enzyme community that the [4Fe-4S](Cys) cluster is extremely air-sensitive and requires strict anaerobic conditions to reconstitute activity in vitro. Thus, how such enzymes function in vivo in the presence of oxygen in aerobic organisms is an interesting question.
View Article and Find Full Text PDFProton-coupled electron transfer reactions play critical roles in many aspects of sensory phototransduction. In the case of flavoprotein light sensors, reductive quenching of flavin excited states initiates chemical and conformational changes that ultimately transmit light signals to downstream targets. These reactions generally require neighboring aromatic residues and proton-donating side chains for rapid and coordinated electron and proton transfer to flavin.
View Article and Find Full Text PDFLight-induction of an anionic semiquinone (SQ) flavin radical in Drosophila cryptochrome (dCRY) alters the dCRY conformation to promote binding and degradation of the circadian clock protein Timeless (TIM). Specific peptide ligation with sortase A attaches a nitroxide spin-probe to the dCRY C-terminal tail (CTT) while avoiding deleterious side reactions. Pulse dipolar electron-spin resonance spectroscopy from the CTT nitroxide to the SQ shows that flavin photoreduction shifts the CTT ~1 nm and increases its motion, without causing full displacement from the protein.
View Article and Find Full Text PDFThe prokaryotic chemotaxis system is arguably the best-understood signaling pathway in biology. In all previously described species, chemoreceptors organize into a hexagonal (P6 symmetry) extended array. Here, we report an alternative symmetry (P2) of the chemotaxis apparatus that emerges from a strict linear organization of the histidine kinase CheA in Treponema denticola cells, which possesses arrays with the highest native curvature investigated thus far.
View Article and Find Full Text PDFBacterial chemoreceptors, the histidine kinase CheA, and the coupling protein CheW form transmembrane molecular arrays with remarkable sensing properties. The receptors inhibit or stimulate CheA kinase activity depending on the presence of attractants or repellants, respectively. We engineered chemoreceptor cytoplasmic regions to assume a trimer of receptor dimers configuration that formed well-defined complexes with CheA and CheW and promoted a CheA kinase-off state.
View Article and Find Full Text PDFCell Chem Biol
September 2020
Mammalian cryptochromes regulate sleep and metabolism as components of the circadian clock. In this issue of Cell Chemical Biology, Miller et al. (2020a) use phenotypic chemical screens to identify selective modulators of two cryptochrome isoforms.
View Article and Find Full Text PDF