Publications by authors named "Brian R Bettencourt"

Background: Microbiomes can have profound impacts on host biology and evolution, but to date, remain vastly understudied in spiders despite their unique and diverse predatory adaptations. This study evaluates closely related species of spiders and their host-microbe relationships in the context of phylosymbiosis, an eco-evolutionary pattern where the microbial community profile parallels the phylogeny of closely related host species. Using 16S rRNA gene amplicon sequencing, we characterized the microbiomes of five species with known phylogenetic relationships from the family Theridiidae, including multiple closely related widow spiders (L.

View Article and Find Full Text PDF

Advancement of RNAi-based therapeutics depends on effective delivery to the site of protein synthesis. Although intravenously administered, multi-component delivery vehicles have enabled small interfering RNA (siRNA) delivery and progression into clinical development, advances of single-component, systemic siRNA delivery have been challenging. In pre-clinical models, attachment of a triantennary N-acetylgalactosamine (GalNAc) ligand to an siRNA mediates hepatocyte uptake via the asialoglycoprotein receptor enabling RNAi-mediated gene silencing.

View Article and Find Full Text PDF

Background: Inclisiran (ALN-PCSsc) is a long-acting RNA interference (RNAi) therapeutic agent that inhibits the synthesis of proprotein convertase subtilisin-kexin type 9 (PCSK9), a target for the lowering of low-density lipoprotein (LDL) cholesterol.

Methods: In this phase 1 trial, we randomly assigned healthy volunteers with an LDL cholesterol level of at least 100 mg per deciliter in a 3:1 ratio to receive a subcutaneous injection of inclisiran or placebo in either a single-ascending-dose phase (at a dose of 25, 100, 300, 500, or 800 mg) or a multiple-dose phase (125 mg weekly for four doses, 250 mg every other week for two doses, or 300 or 500 mg monthly for two doses, with or without concurrent statin therapy); each dose cohort included four to eight participants. Safety, the side-effect profile, and pharmacodynamic measures (PCSK9 level, LDL cholesterol level, and exploratory lipid variables) were evaluated.

View Article and Find Full Text PDF

Primary hyperoxaluria type 1 (PH1), an inherited rare disease of glyoxylate metabolism, arises from mutations in the enzyme alanine-glyoxylate aminotransferase. The resulting deficiency in this enzyme leads to abnormally high oxalate production resulting in calcium oxalate crystal formation and deposition in the kidney and many other tissues, with systemic oxalosis and ESRD being a common outcome. Although a small subset of patients manages the disease with vitamin B6 treatments, the only effective treatment for most is a combined liver-kidney transplant, which requires life-long immune suppression and carries significant mortality risk.

View Article and Find Full Text PDF
Article Synopsis
  • ATTR amyloidosis is a serious and often deadly disease caused by a protein called transthyretin (TTR) building up in the body.
  • Scientists are exploring a new treatment method called RNA interference (RNAi), which can help reduce the amount of TTR made in the liver.
  • In tests with mice, using RNAi significantly helped to lower TTR levels and even shrank existing TTR buildups more effectively than a current treatment called tafamidis.
View Article and Find Full Text PDF

Background: Respiratory syncytial virus (RSV) infection in lung transplant (LTx) patients is associated with an increased incidence of bronchiolitis obliterans syndrome (BOS). ALN-RSV01 is a small interfering RNA targeting RSV replication that was shown in an earlier Phase 2a trial to be safe and to reduce the incidence of BOS when compared with placebo.

Methods: We performed a Phase 2b randomized, double-blind, placebo-controlled trial in RSV-infected LTx patients to examine the impact of ALN-RSV01 on the incidence of new or progressive BOS.

View Article and Find Full Text PDF

Background: Transthyretin-mediated amyloidosis is an inherited, progressively debilitating disease caused by mutations in the transthyretin gene. This study evaluated the safety, tolerability, pharmacokinetics, and pharmacodynamics of multiple doses of patisiran (ALN-TTR02), a small interfering RNA encapsulated within lipid nanoparticles, in patients with transthyretin-mediated familial amyloid polyneuropathy (FAP).

Methods: In this phase II study, patients with FAP were administered 2 intravenous infusions of patisiran at one of the following doses: 0.

View Article and Find Full Text PDF

Objectives: To assess the association between severity of neuropathy and disease stage, and estimate the rate of neuropathy progression in a retrospective cross-sectional analysis of a multinational population of patients with familial amyloidotic polyneuropathy (FAP).

Methods: We characterize neuropathy severity and rate of progression in available patients with FAP in France, the United States, Portugal, and Italy. Neuropathy Impairment Scores (NIS), time from symptom onset to NIS measurement, polyneuropathy disability (PND) scores, FAP disease stage, and manual grip strength data were collected.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates ALN-PCS, an RNA treatment designed to inhibit PCSK9 synthesis, in healthy individuals with elevated cholesterol levels.
  • A randomized trial with 32 volunteers assessed the safety, tolerability, and pharmacodynamics of various doses of ALN-PCS compared to a placebo.
  • Results showed that ALN-PCS significantly reduced PCSK9 levels by 70% and LDL cholesterol by 40% without increasing the rate of adverse events compared to placebo.
View Article and Find Full Text PDF

Background: Transthyretin amyloidosis is caused by the deposition of hepatocyte-derived transthyretin amyloid in peripheral nerves and the heart. A therapeutic approach mediated by RNA interference (RNAi) could reduce the production of transthyretin.

Methods: We identified a potent antitransthyretin small interfering RNA, which was encapsulated in two distinct first- and second-generation formulations of lipid nanoparticles, generating ALN-TTR01 and ALN-TTR02, respectively.

View Article and Find Full Text PDF

Mutations in HFE lead to hereditary hemochromatosis (HH) because of inappropriately high iron uptake from the diet resulting from decreased hepatic expression of the iron-regulatory hormone hepcidin. -thalassemia is a congenital anemia caused by partial or complete loss of -globin synthesis causing ineffective erythropoiesis, anemia, decreased hepcidin production, and secondary iron overload. Tmprss6 is postulated to regulate hepcidin production by cleaving Hemojuvelin (Hjv), a key modulator of hepcidin expression, from the hepatocyte surface.

View Article and Find Full Text PDF

Background: Previously, we described the heat shock response in dipteran species belonging to the family Stratiomyidae that develop in thermally and chemically contrasting habitats including highly aggressive ones. Although all species studied exhibit high constitutive levels of Hsp70 accompanied by exceptionally high thermotolerance, we also detected characteristic interspecies differences in heat shock protein (Hsp) expression and survival after severe heat shock. Here, we analyzed genomic libraries from two Stratiomyidae species from thermally and chemically contrasting habitats and determined the structure and organization of their hsp70 clusters.

View Article and Find Full Text PDF

The Drosophila argonaute2 (ago2) gene plays a major role in siRNA mediated RNA silencing pathways. Unlike mammalian Argonaute proteins, the Drosophila protein has an unusual amino-terminal domain made up largely of multiple copies of glutamine-rich repeats (GRRs). We report here that the ago2 locus produces an alternative transcript that encodes a putative short isoform without this amino-terminal domain.

View Article and Find Full Text PDF

Background: While increasing numbers of small interfering RNA (siRNA) therapeutics enter into clinical trials, the quantification of siRNA from clinical samples for pharmacokinetic studies remains a challenge. This challenge is even more acute for the quantification of chemically modified and formulated siRNAs such as those typically required for systemic delivery.

Results: Here, we describe a novel method, heating-in-Triton quantitative reverse transcription PCR (HIT qRT-PCR) that improves upon the stem-loop RT-PCR technique for the detection of formulated and chemically modified siRNAs from plasma and tissue.

View Article and Find Full Text PDF

Hsc/Hsp70-interacting protein (HIP) is a rapidly evolving Hsp70 cofactor. Analyses of multiple Drosophila species indicate that the HIP gene is duplicated only in D. melanogaster.

View Article and Find Full Text PDF

Thermotolerance involves more than life or death. Investigating the complexity of this trait will aid identification of its genetic contributors. We examined variation in thermally stressed walking behavior and performance in natural Drosophila melanogaster strains and strains mutant for the heat shock protein Hsp70, to determine which aspects of locomotion are affected by heat shock and genotype.

View Article and Find Full Text PDF
Article Synopsis
  • Hsp70 is a protein that helps many organisms, like the fruit fly Drosophila, survive really hot temperatures.
  • Researchers found that having more copies of the Hsp70 gene means these flies can handle heat better, while flies without Hsp70 struggled to survive extreme heat.
  • Even without Hsp70, the flies reacted by increasing levels of other stress-response genes, suggesting there are other ways for flies to try to cope with heat stress.
View Article and Find Full Text PDF
Article Synopsis
  • Scientists found that certain DNA sequences called polyglutamine tracts can sometimes get longer and cause problems in the nervous system.
  • These polyglutamine sequences are important and show up in many living things, but their lengths can be really different even among the same species.
  • A special protein called Hsp70 helps keep these polyglutamine sequences from expanding too much, but it might also be used up when the environment gets too hot, leading to more issues for the flies.
View Article and Find Full Text PDF

Organismic evolution requires that variation at distinct hierarchical levels and attributes be coherently integrated, often in the face of disparate environmental and genetic pressures. A central part of the evolutionary analysis of biological systems remains to decipher the causal connections between organism-wide (or genome-wide) attributes (e.g.

View Article and Find Full Text PDF

We have sequenced the genome of a second Drosophila species, Drosophila pseudoobscura, and compared this to the genome sequence of Drosophila melanogaster, a primary model organism. Throughout evolution the vast majority of Drosophila genes have remained on the same chromosome arm, but within each arm gene order has been extensively reshuffled, leading to a minimum of 921 syntenic blocks shared between the species. A repetitive sequence is found in the D.

View Article and Find Full Text PDF

Relatively little is known about the importance of amino acid interactions in protein and phenotypic evolution. Here we examine whether mutations that are pathogenic in Drosophila melanogaster become fixed via epistasis in other Dipteran genomes. Overall divergence at pathogenic amino acid sites is reduced.

View Article and Find Full Text PDF

Background: The recent completion of the Drosophila melanogaster genomic sequence to high quality and the availability of a greatly expanded set of Drosophila cDNA sequences, aligning to 78% of the predicted euchromatic genes, afforded FlyBase the opportunity to significantly improve genomic annotations. We made the annotation process more rigorous by inspecting each gene visually, utilizing a comprehensive set of curation rules, requiring traceable evidence for each gene model, and comparing each predicted peptide to SWISS-PROT and TrEMBL sequences.

Results: Although the number of predicted protein-coding genes in Drosophila remains essentially unchanged, the revised annotation significantly improves gene models, resulting in structural changes to 85% of the transcripts and 45% of the predicted proteins.

View Article and Find Full Text PDF

We report multiple cases in which disruption of hsp70 regulatory regions by transposable element (TE) insertions underlies natural variation in expression of the stress-inducible molecular chaperone Hsp70 in Drosophila melanogaster. Three D. melanogaster populations from different continents are polymorphic for jockey or P element insertions in the promoter of the hsp70Ba gene.

View Article and Find Full Text PDF

To determine whether and how laboratory and natural selection act on the hsp70 (70-Kd heat-shock protein) genes of Drosophila melanogaster, we examined hsp70 allele frequencies in two sets of populations. First, five populations reared at different temperatures for more than 20 years differentially fixed both a large insertion/deletion (indel) polymorphism at the 87A7 hsp70 cluster ("56H8"/"122") and a single nucleotide polymorphism at the 87C1 hsp70 cluster. In both cases, the 18 degrees C and 25 degrees C populations fixed one allele and the 28 degrees C populations the other, consistent with previously described evolved differences among these populations in Hsp70 expression and thermotolerance.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists studied genes called hsp70 in two types of fruit flies (Drosophila melanogaster and D. simulans) to see how gene conversion affects their evolution.
  • They found that gene conversion helps make the genes very similar within clusters, but some regions showed differences, suggesting a mix of copying and changing over time.
  • The research showed that these processes work together to help the hsp70 genes evolve and adapt in different ways.
View Article and Find Full Text PDF