Publications by authors named "Brian Petri"

Spores of Clostridium botulinum are widely distributed in the environment, including in foods. Prevention of foodborne botulism relies on the inhibition of spore germination and subsequent growth and toxin production, or the destruction of viable spores in food and beverages. This study examined the lethality of 254 nm UV radiation (UV-C) to spores of Group I and Group II C.

View Article and Find Full Text PDF

Ultraviolet (UV) radiation in the wavelength range 200 nm ≤ λ ≤ 320 nm, which includes both the UV-C and UV-B portions of the spectrum, is known to be effective for inactivation of a wide range of microbial pathogens, including viruses. Previous research has indicated UV-C radiation to be effective for inactivation of severe acute respiratory syndrome coronavirus (SARS-CoV), the virus that caused an outbreak of SARS in 2003. Given the structural similarities of SARS-CoV and SARS-CoV-2, the cause of coronavirus disease 2019 (COVID-19), it is anticipated that UV radiation should be effective for inactivation of SARS-CoV-2 too.

View Article and Find Full Text PDF

The most probable number dilution-culture assay (MPN) is used to enumerate viable phytoplankton in regulatory tests of ballast water treatment systems. However the United States Coast Guard has not yet accepted MPN, in part due to concerns of biased results due to cells being viable but not growing. MPN does not assess the fate of every cell, and thus the bias can only be evaluated by a companion method that assesses the ability of the various taxa to grow.

View Article and Find Full Text PDF

The shipping industry is critical to international commerce; however, contemporary shipping practices involve uptake and discharge of ballast water, which introduces the potential for transfer of nonindigenous, invasive species among geographically distinct habitats. To counteract this hazard, regulations for ballast water management have been implemented by the International Maritime Organization (IMO) and by regulatory agencies such as the United States Coast Guard (USCG). IMO and USCG discharge standards are numerically identical, but involve different definitions of treatment end points, which are based on fundamentally different biological assays for quantification of ballast water treatment effectiveness.

View Article and Find Full Text PDF

Ballast water management systems (BWMS) must be tested to assess their compliance with standards for the discharge of organisms, for example in the ≥ 10- and < 50-μm size category, which is dominated by phytoplankton. Assessment of BWMS performance with the vital stains fluorescein diacetate + 5-chlorofluorescein diacetate, required by regulations in the USA, is problematic in the case of ultraviolet-C (UVC) radiation. This is because UVC targets nucleotides-and thus reproduction, hence viability-rather than membrane integrity, which is assayed by the stains.

View Article and Find Full Text PDF

Myxobolus cerebralis is a microscopic metazoan parasite (Phylum Myxozoa: Myxosporea) associated with salmonid whirling disease. There are currently no vaccines to minimise the serious negative economical and ecological impacts of whirling disease among populations of salmonid fish worldwide. UV irradiation has been shown to effectively inactivate the waterborne infective stages or triactinomyxons of M.

View Article and Find Full Text PDF

Water samples with similar particle distribution were irradiated by low-pressure UV. Experiment results were input into the two-kinetic model for calculation. The approach applied in this experiment allowed the assessment of the effect of particles on UV inactivation of FC in their natural state.

View Article and Find Full Text PDF

The effects of freezing, drying, ultraviolet irradiation (UV), chlorine, and a quaternary ammonium compound on the infectivity of the myxospore stage of Myxobolus cerebralis (the causative agent of whirling disease) for Tubifex tubifex were examined in a series of laboratory trials. Freezing at either -20 degrees C or -80 degrees C for a period of 7 d or 2 months eliminated infectivity as assessed by the absence of production of the actinospore stage (triactinomyxons [TAMs]) from T. tubifex cultures inoculated with treated myxospores over a 4-5-month period.

View Article and Find Full Text PDF