Publications by authors named "Brian P Ziemba"

Previous studies have documented the formation of a heterodimer between the two protein kinases PDK1 and PKCα on a lipid bilayer containing their target lipids. This work investigates the association-dissociation kinetics of this PDK1:PKCα heterodimer. The approach monitors the two-dimensional diffusion of single, membrane-associated PDK1 molecules for diffusivity changes as PKCα molecules bind and unbind.

View Article and Find Full Text PDF

Vascular dysfunction: develops progressively with ageing; increases the risk of cardiovascular diseases (CVD); and is characterized by endothelial dysfunction and arterial stiffening, which are primarily mediated by superoxide-driven oxidative stress and consequently reduced nitric oxide (NO) bioavailability and arterial structural changes. Interventions initiated before vascular dysfunction manifests may have more promise for reducing CVD risk than interventions targeting established dysfunction. Gut microbiome-derived trimethylamine N-oxide (TMAO) induces vascular dysfunction, is associated with higher CV risk, and can be suppressed by 3,3-dimethyl-1-butanol (DMB).

View Article and Find Full Text PDF

Consumption of a Western-style diet (WD; high fat, high sugar, low fiber) is associated with impaired vascular function and increased risk of cardiovascular diseases (CVD), which could be mediated partly by increased circulating concentrations of the gut microbiome-derived metabolite trimethylamine N-oxide (TMAO). We investigated if suppression of TMAO with 3,3-dimethyl-1-butanol (DMB; inhibitor of microbial TMA lyase) in mice could prevent: ) WD-induced vascular endothelial dysfunction and aortic stiffening and ) WD-induced reductions in endurance exercise tolerance and increases in frailty, as both are linked to WD, vascular dysfunction, and increased CVD risk. C57BL/6N mice were fed standard chow or WD (41% fat, ∼25% sugar, 4% fiber) for 5 mo beginning at ∼2 mo of age.

View Article and Find Full Text PDF

Aging is characterized by declines in physiological function that increase risk of age-associated diseases and limit healthspan, mediated in part by chronic low-grade inflammation. Interleukin (IL)-37 suppresses inflammation in pathophysiological states but has not been studied in the context of aging in otherwise healthy humans. Thus, we investigated associations between IL-37 and markers of healthspan in 271 young (18-39 years; n = 41), middle-aged (40-64 years; n = 162), and older (65 + years; n = 68) adults free of overt clinical disease.

View Article and Find Full Text PDF

Leukocyte migration is controlled by a leading-edge chemosensory pathway that generates the regulatory lipid phosphatidylinositol-3,4,5-trisphosphate (PIP), a growth signal, thereby driving leading-edge expansion up attractant gradients toward sites of infection, inflammation, or tissue damage. PIP also serves as an important growth signal in growing cells and oncogenesis. The kinases PDK1, AKT1 or PKB, and PKCα are key components of a plasma-membrane-based PIP and Ca signaling circuit that regulates these processes.

View Article and Find Full Text PDF

Background High-resistance inspiratory muscle strength training (IMST) is a novel, time-efficient physical training modality. Methods and Results We performed a double-blind, randomized, sham-controlled trial to investigate whether 6 weeks of IMST (30 breaths/day, 6 days/week) improves blood pressure, endothelial function, and arterial stiffness in midlife/older adults (aged 50-79 years) with systolic blood pressure ≥120 mm Hg, while also investigating potential mechanisms and long-lasting effects. Thirty-six participants completed high-resistance IMST (75% maximal inspiratory pressure, n=18) or low-resistance sham training (15% maximal inspiratory pressure, n=18).

View Article and Find Full Text PDF

We assessed the efficacy of oral supplementation with the flavanoid apigenin on arterial function during aging and identified critical mechanisms of action. Young (6 mo) and old (27 mo) C57BL/6N mice (model of arterial aging) consumed drinking water containing vehicle (0.2% carboxymethylcellulose; 10 young and 7 old) or apigenin (0.

View Article and Find Full Text PDF

The results of the present study establish the temporal pattern of age-related vascular dysfunction across the adult lifespan in sedentary mice consuming a non-Western diet, and the underlying mechanisms The results demonstrate that consuming a Western diet accelerates and exacerbates vascular ageing across the lifespan in sedentary mice They also show that lifelong voluntary aerobic exercise has remarkable protective effects on vascular function throughout the lifespan, in the setting of ageing alone, as well as ageing compounded by Western diet consumption Overall, the results indicate that amelioration of mitochondrial oxidative stress and inflammation are key mechanisms underlying the voluntary aerobic exercise-associated preservation of vascular function across the lifespan in both the presence and absence of a Western dietary pattern ABSTRACT: Advancing age is the major risk factor for cardiovascular diseases, driven largely by vascular endothelial dysfunction (impaired endothelium-dependent dilatation, EDD) and aortic stiffening (increased aortic pulse wave velocity, aPWV). In humans, vascular ageing occurs in the presence of differences in diet and physical activity, but the interactive effects of these factors are unknown. We assessed carotid artery EDD and aPWV across the lifespan in mice consuming standard (normal) low-fat chow (NC) or a high-fat/high-sucrose Western diet (WD) in the absence (sedentary, SED) or presence (voluntary wheel running, VWR) of aerobic exercise.

View Article and Find Full Text PDF

Background: Doxorubicin (DOXO) chemotherapy increases risk for cardiovascular disease in part by inducing endothelial dysfunction in conduit arteries. However, the mechanisms mediating DOXO-associated endothelial dysfunction in (intact) arteries and treatment strategies are not established.

Objectives: We tested the hypothesis that DOXO impairs endothelial function in conduit arteries via excessive mitochondrial reactive oxygen species (ROS) and that these effects could be prevented by treatment with a mitochondrial-targeted antioxidant (MitoQ).

View Article and Find Full Text PDF

Age-related vascular endothelial dysfunction is a major antecedent to cardiovascular diseases. We investigated whether increased circulating levels of the gut microbiome-generated metabolite trimethylamine-N-oxide induces endothelial dysfunction with aging. In healthy humans, plasma trimethylamine-N-oxide was higher in middle-aged/older (64±7 years) versus young (22±2 years) adults (6.

View Article and Find Full Text PDF

Leukocyte migration is controlled by a membrane-based chemosensory pathway on the leading edge pseudopod that guides cell movement up attractant gradients during the innate immune and inflammatory responses. This study employed single cell and population imaging to investigate drug-induced perturbations of leading edge pseudopod morphology in cultured, polarized RAW macrophages. The drugs tested included representative therapeutics (acetylsalicylic acid, diclofenac, ibuprofen, acetaminophen) as well as control drugs (PDGF, Gö6976, wortmannin).

View Article and Find Full Text PDF

Chronic calorie restriction (CR) improves cardiovascular function and several other physiological markers of healthspan. However, CR is impractical in non-obese older humans due to potential loss of lean mass and bone density, poor adherence, and risk of malnutrition. Time-restricted feeding (TRF), which limits the daily feeding period without requiring a reduction in calorie intake, may be a promising alternative healthspan-extending strategy for midlife and older adults; however, there is limited evidence for its feasibility and efficacy in humans.

View Article and Find Full Text PDF

Aging is associated with vascular endothelial dysfunction, reduced exercise tolerance, and impaired whole-body glucose metabolism. Interleukin-37 (IL-37), an anti-inflammatory cytokine of the interleukin-1 family, exerts salutary physiological effects in young mice independent of its inflammation-suppressing properties. Here, we assess the efficacy of IL-37 treatment for improving physiological function in older age.

View Article and Find Full Text PDF

The leukocyte chemosensory pathway detects attractant gradients and directs cell migration to sites of inflammation, infection, tissue damage, and carcinogenesis. Previous studies have revealed that local Ca2+ and PIP3 signals at the leading edge of polarized leukocytes play central roles in positive feedback loop essential to cell polarization and chemotaxis. These prior studies showed that stimulation of the leading edge Ca2+ signal can strongly activate PI3K, thereby triggering a larger PIP3 signal, but did not elucidate the mechanistic link between Ca2+ and PIP3 signaling.

View Article and Find Full Text PDF

Cellular pathways controlling chemotaxis, growth, survival, and oncogenesis are activated by receptor tyrosine kinases and small G-proteins of the Ras superfamily that stimulate specific isoforms of phosphatidylinositol-3-kinase (PI3K). These PI3K lipid kinases phosphorylate the constitutive lipid phosphatidylinositol-4,5-bisphosphate (PIP) to produce the signaling lipid phosphatidylinositol-3,4,5-trisphosphate (PIP). Progress has been made in understanding direct, moderate PI3K activation by receptors.

View Article and Find Full Text PDF

Amoeboid cells that employ chemotaxis to travel up an attractant gradient possess a signaling network assembled on the leading edge of the plasma membrane that senses the gradient and remodels the actin mesh and cell membrane to drive movement in the appropriate direction. In leukocytes such as macrophages and neutrophils, and perhaps in other amoeboid cells as well, the leading edge network includes a positive feedback loop in which the signaling of multiple pathway components is cooperatively coupled. Cytoplasmic Ca is a recently recognized component of the feedback loop at the leading edge where it stimulates phosphoinositide-3-kinase (PI3K) and the production of its product signaling lipid phosphatidylinositol 3,4,5-trisphosphate (PIP).

View Article and Find Full Text PDF

In chemotaxing ameboid cells, a complex leading-edge signaling circuit forms on the cytoplasmic leaflet of the plasma membrane and directs both actin and membrane remodeling to propel the leading edge up an attractant gradient. This leading-edge circuit includes a putative amplification module in which Ca(2+)-protein kinase C (Ca(2+)-PKC) is hypothesized to phosphorylate myristoylated alanine-rich C kinase substrate (MARCKS) and release phosphatidylinositol-4,5-bisphosphate (PIP2), thereby stimulating production of the signaling lipid phosphatidylinositol-3,4,5-trisphosphate (PIP3) by the lipid kinase phosphoinositide-3-kinase (PI3K). We investigated this hypothesized Ca(2+)-PKC-MARCKS-PIP2-PI3K-PIP3 amplification module and tested its key predictions using single-molecule fluorescence to measure the surface densities and activities of its protein components.

View Article and Find Full Text PDF

Protein kinase C-α (PKCα) has been studied widely as a paradigm for conventional PKCs, with two C1 domains (C1A and C1B) being important for the regulation and function of the kinase. However, it is challenging to explore these domains in membrane-bound environments with either simulations or experiments alone. In this work, we have combined modeling, simulations, and experiments to understand the molecular basis of the PKCα C1A and C1B domain interactions with membranes.

View Article and Find Full Text PDF

Protein kinase C-α (PKCα) is a member of the conventional family of protein kinase C isoforms (cPKCs) that regulate diverse cellular signaling pathways, share a common activation mechanism, and are linked to multiple pathologies. The cPKC domain structure is modular, consisting of an N-terminal pseudosubstrate peptide, two inhibitory domains (C1A and C1B), a targeting domain (C2), and a kinase domain. Mature, cytoplasmic cPKCs are inactive until they are switched on by a multistep activation reaction that occurs largely on the plasma membrane surface.

View Article and Find Full Text PDF

The chemotactic migration of eukaryotic ameboid cells up concentration gradients is among the most advanced forms of cellular behavior. Chemotaxis is controlled by a complex network of signaling proteins bound to specific lipids on the cytoplasmic surface of the plasma membrane at the front of the cell, or the leading edge. The central lipid players in this leading edge signaling pathway include the phosphoinositides PI(4,5)P2 (PIP2) and PI(3,4,5)P3 (PIP3), both of which play multiple roles.

View Article and Find Full Text PDF

Phosphoinositide-dependent kinase-1 (PDK1) is an essential master kinase recruited to the plasma membrane by the binding of its C-terminal PH domain to the signaling lipid phosphatidylinositol-3,4,5-trisphosphate (PIP3). Membrane binding leads to PDK1 phospho-activation, but despite the central role of PDK1 in signaling and cancer biology, this activation mechanism remains poorly understood. PDK1 has been shown to exist as a dimer in cells, and one crystal structure of its isolated PH domain exhibits a putative dimer interface.

View Article and Find Full Text PDF

Peripheral membrane proteins bound to lipids on bilayer surfaces play central roles in a wide array of cellular processes, including many signaling pathways. These proteins diffuse in the plane of the bilayer and often undergo complex reactions involving the binding of regulatory and substrate lipids and proteins they encounter during their 2D diffusion. Some peripheral proteins, for example pleckstrin homology (PH) domains, dock to the bilayer in a relatively shallow position with little penetration into the bilayer.

View Article and Find Full Text PDF