Amniotic fluid is a complex biological medium that offers protection to the fetus and plays a key role in normal fetal nutrition, organogenesis, and potentially fetal programming. Amniotic fluid is also critically involved in longitudinally shaping the in utero milieu during pregnancy. Yet, the molecular mechanism(s) of action by which amniotic fluid regulates fetal development is ill-defined partly due to an incomplete understanding of the evolving composition of the amniotic fluid proteome.
View Article and Find Full Text PDFMaternal malnutrition increases fetal and neonatal morbidity, partly by affecting placental function and morphology, but its impact on placental hemodynamics are unknown. Our objective was to define the impact of maternal malnutrition on placental oxygen reserve and perfusion in vivo in a rhesus macaque model of protein restriction (PR) using advanced imaging. Animals were fed control (CON, 26% protein), 33% PR diet (17% protein), or a 50% PR diet (13% protein, n = 8/group) preconception and throughout pregnancy.
View Article and Find Full Text PDFBackground: Milk proteins contain many encrypted bioactive peptides. Whether these bioactive peptides are released in the infant intestine and exert immunomodulatory activity remains unknown.
Objective: This study examined in vitro immunomodulatory activities of peptides from in vitro- and in vivo-digested human milk.
Background: Although it is well established that standardized treatment protocols improve outcomes for infants with congenital diaphragmatic hernia (CDH), there remains variance between existing protocols.
Purpose: The purpose of this article was to review current literature on protocols for CDH management in the preoperative period and to describe a care pathway integrating best practice elements from existing literature with volume-targeted ventilation strategies previously in place at a major tertiary care center in the Pacific Northwestern United States.
Methods/search Strategy: A systematic review of literature was performed according to PRISMA guidelines to identify current publications on CDH protocols and examine them for similarities and differences, particularly regarding ventilation strategies.
For bioactive milk peptides to be relevant to infant health, they must be released by gastrointestinal proteolysis and resist further proteolysis until they reach their site of activity. The intestinal tract is the likeliest site for most bioactivities, but it is currently unknown whether bioactive milk peptides are present therein. The purpose of the present study was to identify antimicrobial and bifidogenic peptides in the infant intestinal tract.
View Article and Find Full Text PDFBackground: Potentially, orally administered antibodies specific to enteric pathogens could be administered to infants to prevent diarrheal infections, particularly in developing countries where diarrhea is a major problem. However, to prevent infection, such antibodies would need to resist degradation within the gastrointestinal tract.
Methods: Palivizumab, a recombinant antibody specific to respiratory syncytial virus (RSV), was used in this study as a model for examining the digestion of neutralizing antibodies to enteric pathogens in infants.
To help rationally design an antibody for oral administration, we examined how different isotypes (IgG, IgA and sIgA) with the same variable sequence affect antibody stability across digestion. We compared the degradation of recombinant palivizumab (IgG1), and recombinant IgA and sIgA versions of palivizumab spiked in human milk to the degradation of naturally-occurring anti-respiratory syncytial virus (RSV) sIgA/IgA and IgG in human milk from four donors across gastric and intestinal phases of an model of infant digestion via a validated RSV F protein ELISA. Palivizumab IgG and IgA formats were less stable than the sIgA version after complete simulated gastrointestinal digestion: palivizumab IgG, IgA and sIgA decreased across complete simulated gastrointestinal digestion by 55%, 48% and 28%, respectively.
View Article and Find Full Text PDFOral administration of pathogen-specific recombinant antibodies may help to prevent infant gastrointestinal (GI) pathogen infection; however, to neutralize an infectious agent, these antibodies must resist degradation in the GI tract. Palivizumab, a recombinant antibody specific for the respiratory syncytial virus (RSV), was used as a model for pathogen-specific IgG in human milk. The aim was to compare the remaining binding capacity of palivizumab in milk between three mothers after exposure to an in vitro model of infant gastrointestinal digestion (gastric and duodenal fluids) using ELISA.
View Article and Find Full Text PDFTo prevent infectious diarrhea in infants, orally-supplemented enteric pathogen-specific recombinant antibodies would need to resist degradation in the gastrointestinal tract. Palivizumab, a recombinant antibody specific to respiratory syncytial virus (RSV), was used as a model to assess the digestion of neutralizing antibodies in infant digestion. The aim was to determine the remaining binding activity of RSV F protein-specific monoclonal and naturally-occurring immunoglobulins (Ig) in different isoforms (IgG, IgA, and sIgA) across an ex vivo model of infant digestion.
View Article and Find Full Text PDF