Publications by authors named "Brian O Bachmann"

Chemical and biological stimulus screening in a hypogean actinomycete was used to elicit secondary metabolism. Optimal biosynthesis of bioactive natural products was identified using Multiplexed Activity Profiling for determining dose-dependent activity via six single-cell biological readouts. Bioactive extracts were fractioned to establish candidate compounds for isolation using Multiplexed Activity Metabolomics by correlating microtiter well-isolated phenotypes and extracted ion current peaks.

View Article and Find Full Text PDF

The orthosomycins are highly modified oligosaccharide natural products with a broad spectrum and potent antimicrobial activities. These include everninomicins and avilamycins, which inhibit protein translation by binding a unique site on the bacterial ribosome. Notably, ribosomal bound structures reveal a network of interactions between the 50S subunit and dichloroisoeverninic acid (DCIE), the aromatic A-ring conserved across orthosomycins, but the relationship of these interactions to their antimicrobial activity remains undetermined.

View Article and Find Full Text PDF

The everninomicins are bacterially produced antibiotic octasaccharides characterized by the presence of two interglycosidic spirocyclic ortho-δ-lactone (orthoester) moieties. The terminating G- and H-ring sugars, L-lyxose and C-4 branched sugar β-D-eurekanate, are proposed to be biosynthetically derived from nucleotide diphosphate pentose sugar pyranosides; however, the identity of these precursors and their biosynthetic origin remain to be determined. Herein we identify a new glucuronic acid decarboxylase from Micromonospora belonging to the superfamily of short-chain dehydrogenase/reductase enzymes, EvdS6.

View Article and Find Full Text PDF

Natural products constitute and significantly impact many current anti-cancer medical interventions. A subset of natural products induces injury processes in malignant cells that recruit and activate host immune cells to produce an adaptive anti-cancer immune response, a process known as immunogenic cell death. However, a challenge in the field is to delineate forms of cell death and injury that best promote durable antitumor immunity.

View Article and Find Full Text PDF

Cancer cells have long been recognized to exhibit unique bioenergetic requirements. The apoptolidin family of glycomacrolides are distinguished by their selective cytotoxicity towards oncogene-transformed cells, yet their molecular mechanism remains uncertain. We used photoaffinity analogs of the apoptolidins to identify the F subcomplex of mitochondrial ATP synthase as the target of apoptolidin A.

View Article and Find Full Text PDF

Fluorescent cell barcoding (FCB) enables efficient collection of tens to hundreds of flow cytometry samples by covalently marking cells with varying concentration of spectrally distinct dyes. A key consideration in FCB is to balance the density of dye barcodes, the complexity of cells in the sample, and the desired accuracy of the debarcoding. Unfortunately, barcoding bench and computational methods have not benefited from the high dimensional revolution in cytometry due to a lack of automated computational tools that effectively balance these common cytometry needs.

View Article and Find Full Text PDF

Herein we report the development of a new periodate-based reactive assay system for the fluorescent detection of the cis-diol metabolites produced by Rieske dioxygenases. This sensitive and diastereoselective assay system successfully evaluates the substrate scope of Rieske dioxygenases and determines the relative activity of a rationally designed Rieske dioxygenase variant library. The high throughput capacity of the assay system enables rapid and efficient substrate scope investigations and screening of large dioxygenase variant libraries.

View Article and Find Full Text PDF

Reported here are novel formic-acid-mediated rearrangements of dearomatized acylphloroglucinols to access a structurally diverse group of synthetic acylphloroglucinol scaffolds (SASs). Density-functional theory (DFT) optimized orbital and stereochemical analyses shed light on the mechanism of these rearrangements. Products were evaluated by multiplexed activity profiling (MAP), an unbiased platform which assays multiple biological readouts simultaneously at single-cell resolution for markers of cell signaling, and can aid in distinguishing genuine activity from assay interference.

View Article and Find Full Text PDF

Many microorganisms possess the capacity for producing multiple antibiotic secondary metabolites. In a few notable cases, combinations of secondary metabolites produced by the same organism are used in important combination therapies for treatment of drug-resistant bacterial infections. However, examples of conjoined roles of bioactive metabolites produced by the same organism remain uncommon.

View Article and Find Full Text PDF

Everninomicins are orthoester oligosaccharide antibiotics with potent activity against multidrug-resistant bacterial pathogens. Everninomicins act by disrupting ribosomal assembly in a distinct region in comparison to clinically prescribed drugs. We employed microporous intergeneric conjugation with Escherichia coli to manipulate Micromonospora for targeted gene-replacement studies of multiple putative methyltransferases across the octasaccharide scaffold of everninomicin effecting the A , C, F, and H rings.

View Article and Find Full Text PDF

Imaging the inventory of microbial small molecule interactions provides important insights into microbial chemical ecology and human medicine. Herein we demonstrate a new method for enhanced detection and analysis of metabolites present in interspecies interactions of microorganisms on surfaces. We demonstrate that desorption electrospray ionization-imaging mass spectrometry (DESI-IMS) using microporous membrane scaffolds (MMS) enables enhanced spatiochemical analyses of interacting microbes among tested sample preparation techniques.

View Article and Find Full Text PDF

Molecules isolated from natural sources including bacteria, fungi, and plants are a long-standing source of therapeutics that continue to add to our medicinal arsenal today. Despite their potency and prominence in the clinic, complex natural products often exhibit a number of liabilities that hinder their development as therapeutics, which may be partially responsible for the current trend away from natural product discovery, research, and development. However, advances in synthetic biology and organic synthesis have inspired a new generation of natural product chemists to tackle powerful undeveloped scaffolds.

View Article and Find Full Text PDF

Members of the orthosomycin family of natural products are decorated polysaccharides with potent antibiotic activity and complex biosynthetic pathways. The defining feature of the orthosomycins is an orthoester linkage between carbohydrate moieties that is necessary for antibiotic activity and is likely formed by a family of conserved oxygenases. Everninomicins are octasaccharide orthosomycins produced by Micromonospora carbonacea that have two orthoester linkages and a methylenedioxy bridge, three features whose formation logically requires oxidative chemistry.

View Article and Find Full Text PDF
Article Synopsis
  • Microorganisms, especially actinobacteria from cave environments, produce secondary metabolites in response to various environmental stimuli, but many of these metabolites remain unidentified.
  • A study surveyed 20 diverse actinobacteria, applying stimuli like antibiotics and metals, and used comparative metabolomics to track significant changes in metabolite production, with over 30% of detected metabolites increasing dramatically under certain conditions.
  • The research identified several known metabolite families and discovered a new compound called funisamine, linked to a specific biosynthetic gene cluster, highlighting the potential for discovering valuable natural products through metabolomic analysis.
View Article and Find Full Text PDF

Discovering bioactive metabolites within a metabolome is challenging because there is generally little foreknowledge of metabolite molecular and cell-targeting activities. Here, single-cell response profiles and primary human tissue comprise a response platform used to discover novel microbial metabolites with cell-type-selective effector properties in untargeted metabolomic inventories. Metabolites display diverse effector mechanisms, including targeting protein synthesis, cell cycle status, DNA damage repair, necrosis, apoptosis, or phosphoprotein signaling.

View Article and Find Full Text PDF

Unlabelled: Several soil-derived Actinobacteria produce secondary metabolites that are proven specific and potent inhibitors of the human angiotensin-I-converting enzyme (ACE), a key target for the modulation of hypertension through its role in the renin-angiotensin-aldosterone system. K-26-DCP is a zinc dipeptidyl carboxypeptidase (DCP) produced by Astrosporangium hypotensionis, and an ancestral homologue of ACE. Here we report the high-resolution crystal structures of K-26-DCP and of its complex with the natural microbial tripeptide product K-26.

View Article and Find Full Text PDF

An expanded definition of 'secondary metabolism' is emerging. Once the exclusive provenance of naturally occurring organisms, evolved over geological time scales, secondary metabolism increasingly encompasses molecules generated via human engineered biocatalysts and biosynthetic pathways. Many of the tools and strategies for enzyme and pathway engineering can find origins in evolutionary theories.

View Article and Find Full Text PDF

Covering: 2000 to 2016The labor-intensive process of microbial natural product discovery is contingent upon identifying discrete secondary metabolites of interest within complex biological extracts, which contain inventories of all extractable small molecules produced by an organism or consortium. Historically, compound isolation prioritization has been driven by observed biological activity and/or relative metabolite abundance and followed by dereplication via accurate mass analysis. Decades of discovery using variants of these methods has generated the natural pharmacopeia but also contributes to recent high rediscovery rates.

View Article and Find Full Text PDF

The apoptolidins are glycomacrolide microbial metabolites reported to be selectively cytotoxic against tumor cells. Using fluorescently tagged active derivatives we demonstrate selective uptake of these four tagged glycomacrolides in cancer cells over healthy human blood cells. We also demonstrate the utility of these five fluorescently tagged glycomacrolides in fluorescent flow cytometry to monitor cellular uptake of the six glycomacrolides and cellular response.

View Article and Find Full Text PDF

A conventional metabolic pathway leads to a specific product. In stark contrast, there are diversity-generating metabolic pathways that naturally produce different chemicals, sometimes of great diversity. We demonstrate that for one such pathway, tru, each ensuing metabolic step is slower, in parallel with the increasing potential chemical divergence generated as the pathway proceeds.

View Article and Find Full Text PDF

The anthracyclines are a class of highly effective natural product chemotherapeutics and are used to treat a range of cancers, including leukemia. The toxicity of the anthracyclines has stimulated efforts to further diversify the scaffold of the natural product, which has led to renewed interest in the biosynthetic pathway responsible for the formation and modification of this family of molecules. DnmZ is an N-hydroxylating flavin monooxygenase (a nitrososynthase) that catalyzes the oxidation of the exocyclic amine of the sugar nucleotide dTDP-L-epi-vancosamine to its nitroso form.

View Article and Find Full Text PDF

Orthosomycins are oligosaccharide antibiotics that include avilamycin, everninomicin, and hygromycin B and are hallmarked by a rigidifying interglycosidic spirocyclic ortho-δ-lactone (orthoester) linkage between at least one pair of carbohydrates. A subset of orthosomycins additionally contain a carbohydrate capped by a methylenedioxy bridge. The orthoester linkage is necessary for antibiotic activity but rarely observed in natural products.

View Article and Find Full Text PDF

Intergeneric microbial interactions may originate a significant fraction of secondary metabolic gene regulation in nature. Herein, we expose a genomically characterized Nocardiopsis strain, with untapped polyketide biosynthetic potential, to intergeneric interactions via coculture with low inoculum exposure to Escherichia, Bacillus, Tsukamurella, and Rhodococcus. The challenge-induced responses of extracted metabolites were characterized via multivariate statistical and self-organizing map (SOM) analyses, revealing the magnitude and selectivity engendered by the limiting case of low inoculum exposure.

View Article and Find Full Text PDF

Secondary metabolite biosynthesis in microorganisms responds to discrete chemical and biological stimuli; however, untargeted identification of these responses presents a significant challenge. Herein we apply multiplexed stimuli to Streptomyces coelicolor and collect the resulting response metabolomes via ion mobility-mass spectrometric analysis. Self-organizing map (SOM) analytics adapted for metabolomic data demonstrate efficient characterization of the subsets of primary and secondary metabolites that respond similarly across stimuli.

View Article and Find Full Text PDF

Apoptolidin A has been described among the top 0.1% most-cell-selective cytotoxic agents to be evaluated in the NCI 60 cell line panel. The molecular structure of apoptolidin A consists of a 20-membered macrolide with mono- and disaccharide moieties.

View Article and Find Full Text PDF