Publications by authors named "Brian O'Regan"

We apply a series of transient measurements to operational perovskite solar cells of the architecture ITO/PTAA/FACsPb(IBr)/C60/BCP/Ag, and similar cells with FAMA. The cells show no detectable JV hysteresis. Using photocurrent transients at applied bias we find a ∼1 ms time scale for the electric field screening by mobile ions in these cells.

View Article and Find Full Text PDF

Ion migration has been proposed as a possible cause of photovoltaic current-voltage hysteresis in hybrid perovskite solar cells. A major objection to this hypothesis is that hysteresis can be reduced by changing the interfacial contact materials; however, this is unlikely to significantly influence the behaviour of mobile ionic charge within the perovskite phase. Here, we show that the primary effects of ion migration can be observed regardless of whether the contacts were changed to give devices with or without significant hysteresis.

View Article and Find Full Text PDF

Charge recombination between oxidized dyes attached to mesoporous TiO and electrons in the TiO was studied in inert electrolytes using transient absorption spectroscopy. Simultaneously, hole transport within the dye monolayers was monitored by transient absorption anisotropy. The rate of recombination decreased when hole transport was inhibited selectively, either by decreasing the dye surface coverage or by changing the electrolyte environment.

View Article and Find Full Text PDF

Solar cells based on organic-inorganic halide perovskites have recently shown rapidly rising power conversion efficiencies, but exhibit unusual behaviour such as current-voltage hysteresis and a low-frequency giant dielectric response. Ionic transport has been suggested to be an important factor contributing to these effects; however, the chemical origin of this transport and the mobile species are unclear. Here, the activation energies for ionic migration in methylammonium lead iodide (CH3NH3PbI3) are derived from first principles, and are compared with kinetic data extracted from the current-voltage response of a perovskite-based solar cell.

View Article and Find Full Text PDF

Methylammonium lead iodide perovskite can make high-efficiency solar cells, which also show an unexplained photocurrent hysteresis dependent on the device-poling history. Here we report quasielastic neutron scattering measurements showing that dipolar CH3NH3(+) ions reorientate between the faces, corners or edges of the pseudo-cubic lattice cages in CH3NH3PbI3 crystals with a room temperature residence time of ∼14 ps. Free rotation, π-flips and ionic diffusion are ruled out within a 1-200-ps time window.

View Article and Find Full Text PDF

Methylammonium lead iodide (MAPI) cells of the design FTO/sTiO2/mpTiO2/MAPI/Spiro-OMeTAD/Au, where FTO is fluorine-doped tin oxide, sTiO2 indicates solid-TiO2, and mpTiO2 is mesoporous TiO2, are studied using transient photovoltage (TPV), differential capacitance, charge extraction, current interrupt, and chronophotoamperometry. We show that in mpTiO2/MAPI cells there are two kinds of extractable charge stored under operation: a capacitive electronic charge (∼0.2 μC/cm(2)) and another, larger charge (40 μC/cm(2)), possibly related to mobile ions.

View Article and Find Full Text PDF

Three organic or hybrid photovoltaic technologies are compared with respect to performance and stability under the harsh regime of concentrated light. Although all three technologies show surprisingly high (and linear) photocurrents, and better than expected stability, no golden apples are awarded.

View Article and Find Full Text PDF

We propose a new mechanism by which the common electrolyte additive guanidinium thiocyanate (GdmSCN) improves efficiency in dye-sensitized solar cells (DSSCs). We demonstrate that binding of Gdm(+) to TiO2 is weak and does not passivate recombination sites on the TiO2 surface as has been previously claimed. Instead, we show that Gdm(+) binds strongly to the N719 and D131 dyes and probably to many similar compounds.

View Article and Find Full Text PDF

Tools that assess the limitations of dye sensitized solar cells (DSSCs) made with new materials are critical for progress. Measuring the transient electrical signals (voltage or current) after optically perturbing a DSSC is an approach which can give information about electron concentration, transport and recombination. Here we describe the theory and practice of this class of optoelectronic measurements, illustrated with numerous examples.

View Article and Find Full Text PDF

The wide bandgap and highly transparent inorganic compound copper(I) thiocyanate (CuSCN) is used for the first time to fabricate p-type thin-film transistors processed from solution at room temperature. By combining CuSCN with the high-k relaxor ferroelectric polymeric dielectric P(VDF-TrFE-CFE), we demonstrate low-voltage transistors with hole mobilities on the order of 0.1 cm(2) V(-1) s(-1) .

View Article and Find Full Text PDF

The optical, structural and charge transport properties of solution-processed films of copper(I) thiocyanate (CuSCN) are investigated in this work. As-processed CuSCN films of ~20 nm in thickness are found to be nano-crystalline, highly transparent and exhibit intrinsic hole transporting characteristics with a maximum field-effect mobility in the range of 0.01-0.

View Article and Find Full Text PDF

We have measured the binding coefficients of iodine to three dyes used in Dye Sensitised Solar Cells (DSSCs). Binding coefficients are quantified via the effect of iodine binding on the UV-vis spectrum of the dye. From iodine titration curves of dye sensitised TiO(2) films we find that the binding coefficients of iodine to the dyes C101, N719 and AR24 (vide infra) are in the range of 2000-4000 M(-1).

View Article and Find Full Text PDF

The order of regeneration for DSCs based on two organic dyes has been investigated by transient absorption spectroscopy on devices under operating conditions and determined to be 2nd order in iodide. The results shed light on the mechanism and limits to the regeneration rate relative to oxidation potential.

View Article and Find Full Text PDF

A numerical model of the dye sensitised solar cell (DSSC) is used to assess the importance of different loss pathways under various operational conditions. Based on our current understanding, the simulation describes the processes of injection, regeneration, recombination and transport of electrons, oxidised dye molecules and electrolyte within complete devices to give both time dependent and independent descriptions of performance. The results indicate that the flux of electrons lost from the nanocrystalline TiO(2) film is typically at least twice as large under conditions equivalent to 1 sun relative to dark conditions at matched TiO(2) charge concentration.

View Article and Find Full Text PDF

A simple and powerful approach for assessing the recombination losses in dye sensitised solar cells (DSSCs) across the current voltage curve (j-V) as a function of TiO(2) electron concentration (n) is demonstrated. The total flux of electrons recombining with iodine species in the electrolyte and oxidised dye molecules can be thought of as a recombination current density, defined as j(rec) = j(inj)-j where j(inj) is the current of electrons injected from optically excited dye states and j is the current density collected at cell voltage (V). The electron concentration at any given operating conditions is determined by charge extraction.

View Article and Find Full Text PDF

Dye-sensitized solar cells (DSSCs) are photoelectrochemical solar cells. Their function is based on photoinduced charge separation at a dye-sensitized interface between a nanocrystalline, mesoporous metal oxide electrode and a redox electrolyte. They have been the subject of substantial academic and commercial research over the last 20 years, motivated by their potential as a low-cost solar energy conversion technology.

View Article and Find Full Text PDF

Photocurrents generated by thick, strongly absorbing, dye-sensitized cells were reduced when the electrolyte iodine concentration was increased. Electron diffusion lengths measured using common transient techniques (L(n)) were at least two times higher than diffusion lengths measured at steady state (L(IPCE)). Charge collection efficiency calculated using L(n) seriously overpredicted photocurrent, while L(IPCE) correctly predicted photocurrent.

View Article and Find Full Text PDF

In this paper we focus upon the electron injection dynamics in complete nanocrystalline titanium dioxide dye-sensitized solar cells (DSSCs) employing the ruthenium bipyridyl sensitizer dye N719. Electron injection dynamics and quantum yields are studied by time-resolved single photon counting, and the results are correlated with device performance. In typical DSSC devices, electron injection kinetics were found to proceed from the N719 triplet state with a half-time of 200 +/- 60 ps and quantum yield of 84 +/- 5%.

View Article and Find Full Text PDF

Recombination between injected electrons and iodine limits the photovoltage in dye-sensitized solar cells (DSSCs). We have recently suggested that many new dye molecules, intended to improve DSSCs, can accelerate this reaction, negating the expected improvement (J. Am.

View Article and Find Full Text PDF

A series of heteroleptic ruthenium(II) polypyridyl complexes containing phenanthroline ligands have been designed, synthesized, and characterized. The spectroscopic and electrochemical properties of the complexes have been studied in solution and adsorbed onto semiconductor nanocrystalline metal oxide particles. The results show that for two of the ruthenium complexes, bearing electron-donating (-NH2) or electron-withdrawing (-NO2) groups, the presence of the redox-active I(-)/I3(-) electrolyte produces important changes in the interfacial charge transfer processes that limit the device performance.

View Article and Find Full Text PDF