Observation of interlayer, charge transfer (CT) excitons in van der Waals heterostructures (vdWHs) based on 2D-2D systems has been well investigated. While conceptually interesting, these charge transfer excitons are highly delocalized and spatially localizing them requires twisting layers at very specific angles. This issue of localizing the CT excitons can be overcome via making nanoplate-2D material heterostructures (N2DHs) where one of the components is a spatially quantum confined medium.
View Article and Find Full Text PDFUnderstanding biomineralization relies on imaging chemically heterogeneous organic-inorganic interfaces across a hierarchy of spatial scales. Further, organic minority phases are often responsible for emergent inorganic structures from the atomic arrangement of different polymorphs, to nano- and micrometer crystal dimensions, up to meter size mollusk shells. The desired simultaneous chemical and elemental imaging to identify sparse organic moieties across a large field-of-view with nanometer spatial resolution has not yet been achieved.
View Article and Find Full Text PDFMicroplastic particles are of increasing environmental concern due to the widespread uncontrolled degradation of various commercial products made of plastic and their associated waste disposal. Recently, common technology used to repair sewer pipes was reported as one of the emission sources of airborne microplastics in urban areas. This research presents results of the multi-modal comprehensive chemical characterization of the microplastic particles related to waste discharged in the pipe repair process and compares particle composition with the components of uncured resin and cured plastic composite used in the process.
View Article and Find Full Text PDFPolyoxometalates (POMs) with localized radical or open-shell metal sites have the potential to be used as transformative electronic spin based molecular qubits (MQs) for quantum computing (QC). For practical applications, MQs have to be immobilized in electronically or optically addressable arrays which introduces interactions with supports as well as neighboring POMs. Herein, we synthesized Keggin POMs with both tungsten (W) and vanadium (V) addenda atoms.
View Article and Find Full Text PDFTip-enhanced Raman spectroscopy (TERS) is a powerful technique that enables ultrahigh spatial resolution and ultrasensitive chemical imaging. This technique's ability to track plasmon-induced/enhanced chemical reactions in real space has gained increasing popularity in recent years. In this study, we expose inherent difficulties associated with assigning TERS signatures that accompany chemical transformations.
View Article and Find Full Text PDFThe COVID-19 pandemic has claimed millions of lives worldwide, sickened many more, and has resulted in severe socioeconomic consequences. As society returns to normal, understanding the spread and persistence of SARS CoV-2 on commonplace surfaces can help to mitigate future outbreaks of coronaviruses and other pathogens. We hypothesize that such an understanding can be aided by studying the binding and interaction of viral proteins with nonbiological surfaces.
View Article and Find Full Text PDFWe combine nanoindentation, herein achieved using atomic force microscopy-based pulsed-force lithography, with tip-enhanced Raman spectroscopy (TERS) and imaging. Our approach entails indentation and multimodal characterization of otherwise flat Au substrates, followed by chemical functionalization and TERS spectral imaging of the indented nanostructures. We find that the resulting structures, which vary in shape and size depending on the tip used to produce them, may sustain nano-confined and significantly enhanced local fields.
View Article and Find Full Text PDFWe interrogate -mercaptobenzoic acid (MBA) molecules chemisorbed onto plasmonic silver nanocubes through tip-enhanced Raman (TER) spectral nanoimaging. Through a detailed examination of the spectra, aided by correlation analysis and density functional theory calculations, we find that MBA chemisorbs onto the plasmonic particles with at least two distinct configurations: S- and CO-bound. High spatial resolution TER mapping allows us to distinguish between the distinct adsorption geometries with a pixel-limited (<5 nm) spatial resolution under ambient laboratory conditions.
View Article and Find Full Text PDFClassical versus quantum plasmons are responsible for the recorded signals in non-contact-mode versus contact-mode tip-enhanced Raman spectroscopy (TERS) and lead to distinct observables. Under otherwise identical experimental conditions, we illustrate the concept through tapping- and contact-mode TERS mapping of chemically functionalized silver nanocubes. Whereas molecular charging, chemical transformations, and optical rectification are prominent observables in contact-mode TERS, the same effects are suppressed using tapping-mode feedback.
View Article and Find Full Text PDFImaging biological systems with simultaneous intrinsic chemical specificity and nanometer spatial resolution in their typical native liquid environment has remained a long-standing challenge. Here, we demonstrate a general approach of chemical nanoimaging in liquid based on infrared scattering scanning near-field optical microscopy (IR -SNOM). It is enabled by combining AFM operation in a fluid cell with evanescent IR illumination via total internal reflection, which provides spatially confined excitation for minimized IR water absorption, reduced far-field background, and enhanced directional signal emission and sensitivity.
View Article and Find Full Text PDFWe revisit the reductive coupling of nitrothiophenol (NTP) to form dimercaptoazobenzene (DMAB), herein monitored through gap-mode tip-enhanced Raman spectroscopy (TERS) and nanoimaging. We employ a plasmonic Au probe (100 nm diameter at its apex) illuminated with a 633 nm laser source (50 μW/μm at the sample position) to image an NTP-coated faceted silver nanoparticle (∼70 nm diameter). A detailed analysis of the recorded spectra reveals that anionic NTP species contribute to the recorded spectral images, in addition to the more thoroughly described DMAB product.
View Article and Find Full Text PDFTip-enhanced Raman (TER) spectral images of 4-thiobenzonitrile-coated Au nanorods map the spatial profiles and trace the resonances of dipolar and multipolar plasmonic modes that are characteristic of the imaged particles. For any particular rod, we observe sequential transitions between high-order modes at low frequency shifts and lower-order modes at higher frequencies. We also notice that higher-order modes (up to = 4) are generally observed for long rods as compared to their shorter analogues, where longitudinal dipolar resonances ( = 1) are observable.
View Article and Find Full Text PDFWe record nanoscale chemical images of thiobenzonitrile (TBN)-functionalized plasmonic gold nanocubes via tip-enhanced Raman spectroscopy (TERS). The spatially averaged optical response is dominated by conventional (dipolar) TERS scattering from TBN but also contains weaker spectral signatures in the 1225-1500 cm region. The weak optical signatures dominate several of the recorded single-pixel TERS spectra.
View Article and Find Full Text PDFLight-matter interaction in two-dimensional photonic or phononic materials allows for the confinement and manipulation of free-space radiation at sub-wavelength scales. Most notably, the van der Waals heterostructure composed of graphene (G) and hexagonal boron nitride (hBN) provides for gate-tunable hybrid hyperbolic plasmon phonon-polaritons (HP). Here, we present the anisotropic flow control and gate-voltage modulation of HP modes in G-hBN on an air-Au microstructured substrate.
View Article and Find Full Text PDFControl of photoinduced forces allows nanoparticle manipulation, atom trapping, and fundamental studies of light-matter interactions. Scanning probe microscopy enables the local detection of photoinduced effects with nano-optical imaging and spectroscopy modalities being used for chemical analysis and the study of physical effects. Recently, the development of a novel scanning probe technique has been reported with local chemical sensitivity attributed to the localization and detection of the optical gradient force between a probe tip and sample surface via infrared vibrationally resonant coupling.
View Article and Find Full Text PDFMany phase transitions in correlated matter exhibit spatial inhomogeneities with expected yet unexplored effects on the associated ultrafast dynamics. Here we demonstrate the combination of ultrafast nondegenerate pump-probe spectroscopy with far from equilibrium excitation, and scattering scanning near-field optical microscopy (s-SNOM) for ultrafast nanoimaging. In a femtosecond near-field near-IR (NIR) pump and mid-IR (MIR) probe study, we investigate the photoinduced insulator-to-metal (IMT) transition in nominally homogeneous VO2 microcrystals.
View Article and Find Full Text PDFInfrared vibrational nano-spectroscopy based on scattering scanning near-field optical microscopy (s-SNOM) provides intrinsic chemical specificity with nanometer spatial resolution. Here we use incoherent infrared radiation from a 1400 K thermal blackbody emitter for broadband infrared (IR) nano-spectroscopy. With optimized interferometric heterodyne signal amplification we achieve few-monolayer sensitivity in phonon polariton spectroscopy and attomolar molecular vibrational spectroscopy.
View Article and Find Full Text PDFThe insulator-metal transition (IMT) of vanadium dioxide (VO2) has remained a long-standing challenge in correlated electron physics since its discovery five decades ago. Most interpretations of experimental observations have implicitly assumed a homogeneous material response. Here we reveal inhomogeneous behaviour of even individual VO2 microcrystals using pump-probe microscopy and nanoimaging.
View Article and Find Full Text PDFThe surface plasmon polaritons (SPPs) of graphene reflect the microscopic spatial variations of underlying electronic structure and dynamics. Here, we excite and image the graphene SPP response in phase and amplitude by near-field interferometry. We develop an analytic cavity model that can self-consistently describe the SPP response function for edge, grain boundary, and defect SPP reflection and scattering.
View Article and Find Full Text PDF