Publications by authors named "Brian Nieman"

Purpose: Brain temperature is tightly regulated and reflects a balance between cerebral metabolic heat production and heat transfer between the brain, blood, and external environment. Blood temperature and flow are critical to the regulation of brain temperature. Current methods for measuring in vivo brain and blood temperature are invasive and impractical for use in small animals.

View Article and Find Full Text PDF

The course of normal development and response to pathology are strongly influenced by biological sex. For instance, female childhood cancer survivors who have undergone cranial radiation therapy (CRT) tend to display more pronounced cognitive deficits than their male counterparts. Sex effects can be the result of sex chromosome complement (XX vs.

View Article and Find Full Text PDF

Microglia have been shown to proliferate and become activated following cranial radiotherapy (CRT), resulting in a chronic inflammatory response. We investigated the role of microglia in contributing to widespread volume losses observed in the brain following CRT in juvenile mice. To manipulate microglia, we used low-dose treatment with a highly selective CSF1R inhibitor called PLX5622 (PLX).

View Article and Find Full Text PDF

Obesity is a major modifiable risk factor for Alzheimer's disease (AD), characterized by progressive atrophy of the cerebral cortex. The neurobiology of obesity contributions to AD is poorly understood. Here we show with in vivo MRI that diet-induced obesity decreases cortical volume in mice, and that higher body adiposity associates with lower cortical volume in humans.

View Article and Find Full Text PDF

Drugs of abuse induce neuroadaptations, including synaptic plasticity, that are critical for transition to addiction, and genes and pathways that regulate these neuroadaptations are potential therapeutic targets. () is an actin-regulating gene that plays an important role in synapse maturation and dendritic arborization and has been implicated in substance abuse and intellectual disability in humans. Here, we mine the KOMP2 data and find that 2 knock-out mice show emotionality phenotypes that are predictive of addiction vulnerability.

View Article and Find Full Text PDF

TDP-43 pathology is found in several neurodegenerative disorders, collectively referred to as "TDP-43 proteinopathies". Aggregates of TDP-43 are present in the brains and spinal cords of >97% of amyotrophic lateral sclerosis (ALS), and in brains of ∼50% of frontotemporal dementia (FTD) patients. While mutations in the TDP-43 gene (TARDBP) are usually associated with ALS, many clinical reports have linked these mutations to cognitive impairments and/or FTD, but also to other neurodegenerative disorders including Parkinsonism (PD) or progressive supranuclear palsy (PSP).

View Article and Find Full Text PDF

Variants in the ubiquitously expressed DNA/RNA-binding protein FUS cause aggressive juvenile forms of amyotrophic lateral sclerosis (ALS). Most FUS mutation studies have focused on motor neuron degeneration; little is known about wider systemic or developmental effects. We studied pleiotropic phenotypes in a physiological knock-in mouse model carrying the pathogenic FUSDelta14 mutation in homozygosity.

View Article and Find Full Text PDF

Human and animal studies suggest that exercise promotes healthy brain development and function, including promoting hippocampal growth. Childhood cancer survivors that have received cranial radiotherapy exhibit hippocampal volume deficits and are at risk of impaired cognitive function, thus they may benefit from regular exercise. While morphological changes induced by exercise have been characterized using magnetic resonance imaging (MRI) in humans and animal models, evaluation of changes across the brain through development and following cranial radiation is lacking.

View Article and Find Full Text PDF
Article Synopsis
  • - G9a (EHMT2) is crucial for embryonic development and impacts various processes, especially in the nervous system formed from Isl1-expressing progenitor cells.
  • - Inactivating G9a leads to significant developmental issues like cardiac hypertrophy, hydrocephalus, and underdevelopment of the cerebellum, which can model conditions such as the Dandy-Walker complex.
  • - Analysis of G9a mutants shows disorganization and thinning of the neuroepithelium, which may disrupt cerebrospinal fluid dynamics and further amplify developmental malformations.
View Article and Find Full Text PDF

Magnetic Resonance Imaging (MRI) resolution continues to improve, making it important to understand the cellular basis for different MRI contrast mechanisms. Manganese-enhanced MRI (MEMRI) produces layer-specific contrast throughout the brain enabling in vivo visualization of cellular cytoarchitecture, particularly in the cerebellum. Due to the unique geometry of the cerebellum, especially near the midline, 2D MEMRI images can be acquired from a relatively thick slice by averaging through areas of uniform morphology and cytoarchitecture to produce very high-resolution visualization of sagittal planes.

View Article and Find Full Text PDF

ATRX is a chromatin remodelling ATPase that is involved in transcriptional regulation, DNA damage repair and heterochromatin maintenance. It has been widely studied for its role in ALT-positive cancers, but its role in neurological function remains elusive. Hypomorphic mutations in the X-linked ATRX gene cause a rare form of intellectual disability combined with alpha-thalassemia called ATR-X syndrome in hemizygous males.

View Article and Find Full Text PDF

Background: Intrathecal injections provide important access to the central nervous system for delivery of anesthetic, analgesic or chemotherapeutic drugs that do not otherwise cross the blood-brain barrier. The administration of drugs via this route in animal models is challenging due to an inability to visualize the small target space during injection. Successful drug delivery therefore requires expertise in indirectly assessing vertebral and spinal cord anatomy and gaining advanced procedural skills.

View Article and Find Full Text PDF

Pediatric brain tumor treatments have a high success rate, but survivors are at risk of cognitive sequelae that impact long-term quality of life. We summarize recent clinical and animal model research addressing pathogenesis or evaluating candidate interventions for treatment-induced cognitive sequelae. Assayed interventions encompass a broad range of approaches, including modifications to radiotherapy, modulation of immune response, prevention of treatment-induced cell loss or promotion of cell renewal, manipulation of neuronal signaling, and lifestyle/environmental adjustments.

View Article and Find Full Text PDF

Extensive evidence supports the role of the immune system in modulating brain function and behaviour. However, past studies have revealed striking heterogeneity in behavioural phenotypes produced from immune system dysfunction. Using magnetic resonance imaging, we studied the neuroanatomical differences among 11 distinct genetically modified mouse lines (n = 371), each deficient in a different element of the immune system.

View Article and Find Full Text PDF

Exposure to maternal immune activation (MIA) in utero is a risk factor for neurodevelopmental and psychiatric disorders. MIA-induced deficits in adolescent and adult offspring have been well characterized; however, less is known about the effects of MIA exposure on embryo development. To address this gap, we performed high-resolution ex vivo MRI to investigate the effects of early (gestational day [GD]9) and late (GD17) MIA exposure on embryo (GD18) brain structure.

View Article and Find Full Text PDF

Purpose: Cranial radiation therapy for the treatment of pediatric brain tumors results in changes to brain development that are detectable with magnetic resonance imaging. We have previously demonstrated similar structural changes in both humans and mice. The goal of the current study was to examine the role of inflammation in this response.

View Article and Find Full Text PDF

Prenatal exposure to maternal immune activation (MIA) is a risk factor for a variety of neurodevelopmental and psychiatric disorders. The timing of MIA-exposure has been shown to affect adolescent and adult offspring neurodevelopment, however, less is known about these effects in the neonatal period. To better understand the impact of MIA-exposure on neonatal brain development in a mouse model, we assess neonate communicative abilities with the ultrasonic vocalization task, followed by high-resolution ex vivo magnetic resonance imaging (MRI) on the neonatal (postnatal day 8) mouse brain.

View Article and Find Full Text PDF

Sequelae after pediatric cranial radiotherapy (CRT) result in long-term changes in brain structure. While past evidence indicates regional differences in brain volume change, it remains unclear how these manifest in the time course of change after CRT. In this study, we spatiotemporally characterized volume losses induced by cranial irradiation in a mouse model, with a dense sampling of measurements over the first week postirradiation.

View Article and Find Full Text PDF

Background: Cranial radiation therapy (CRT) is a mainstay of treatment for malignant pediatric brain tumors and high-risk leukemia. Although CRT improves survival, it has been shown to disrupt normal brain development and result in cognitive impairments in cancer survivors. Animal studies suggest that there is potential to promote brain recovery after injury using metformin.

View Article and Find Full Text PDF
Article Synopsis
  • * Research in mice showed that those exposed to a high-fat diet during early life had significant brain changes in adulthood, even after switching to a low-fat diet at weaning.
  • * Key brain areas affected include the extended amygdalar system, associated with reward-seeking behavior, with genes linked to these regions also involved in feeding behavior and human NDDs like autism.
View Article and Find Full Text PDF

Arginase-1 (Arg1) is an enzyme controlling the final step of the urea cycle, with highest expression in the liver and lower expression in the lungs, pancreas, kidney, and some blood cells. Arg1 deficiency is an inherited urea cycle disorder presenting with neurological dysfunction including spastic diplegia, intellectual and growth retardation, and encephalopathy. The contribution of Arg1 expression in the central and peripheral nervous system to the development of neurological phenotypes remains largely unknown.

View Article and Find Full Text PDF

Background: With high survival rates for pediatric acute lymphoblastic leukemia (ALL), long-term quality of life is a prominent consideration in treatment. We concurrently evaluated cognition, behavior, and quality of life in child and adolescent ALL survivors and determined associations between them.

Methods: The sample included 83 controls (mean age: 12.

View Article and Find Full Text PDF

Introduction: Cure rates for pediatric acute lymphoblastic leukemia (ALL) have reached an all-time high (>90%); however, neurocognitive difficulties continue to affect quality of life in at least a subset of survivors. There are relatively few quantitative neuroimaging studies in child and adolescent ALL survivors treated with chemotherapy only. Use of different outcome measures or limited sample sizes restrict our ability to make inferences about patterns of brain development following chemotherapy treatment.

View Article and Find Full Text PDF