Publications by authors named "Brian Nedved"

Metamorphosis for many marine invertebrates is triggered by external cues, commonly produced by bacteria. For larvae of Hydroides elegans, lipopolysaccharide (LPS) from the biofilm-dwelling bacterium Cellulophaga lytica induces metamorphosis. To determine whether bacterial LPS is a common metamorphosis-inducing factor for this species, we compare larval responses to LPS from 3 additional inductive Gram-negative marine biofilm bacteria with commercially available LPS from 3 bacteria not known to induce metamorphosis.

View Article and Find Full Text PDF

How larvae of the many phyla of marine invertebrates find places appropriate for settlement, metamorphosis, growth, and reproduction is an enduring question in marine science. Biofilm-induced metamorphosis has been observed in marine invertebrate larvae from nearly every major marine phylum. Despite the widespread nature of this phenomenon, the mechanism of induction remains poorly understood.

View Article and Find Full Text PDF

Larvae of many marine invertebrates bear an anteriorly positioned apical sensory organ (ASO) presumed to be the receptor for settlement- and metamorphosis-inducing environmental cues, based on its structure, position and observed larval behavior. Larvae of the polychaete Hydroides elegans are induced to settle by bacterial biofilms, which they explore with their ASO and surrounding anteroventral surfaces. A micro-laser was utilized to destroy the ASO and other anterior ciliary structures in competent larvae of H.

View Article and Find Full Text PDF

The broadly distributed serpulid worm Hydroides elegans has become a model organism for studies of marine biofouling, development and the processes of larval settlement and metamorphosis induced by surface microbial films. Contrasting descriptions of the initial events of these recruitment processes, whether settlement is induced by (1) natural multi-species biofilms, (2) biofilms composed of single bacterial species known to induce settlement, or (3) a bacterial extract stimulated the research described here. We found that settlement induced by natural biofilms or biofilms formed by the bacterium Pseudoalteromonas luteoviolacea is invariably initiated by attachment and secretion of an adherent and larva-enveloping primary tube, followed by loss of motile cilia and ciliated cells and morphogenesis.

View Article and Find Full Text PDF

AbstractThe serpulid polychaete has emerged as a major model organism for studies of marine invertebrate settlement and metamorphosis and for processes involved in marine biofouling. Rapid secretion of an enveloping, membranous, organic primary tube provides settling larvae of firm adhesion to a surface and a refuge within which to complete metamorphosis. While this tube is never calcified, it forms the template from which the calcified tube is produced at its anterior end.

View Article and Find Full Text PDF

A bacterial isolate of Thalassotalea euphylliae H2 was collected from the coral Montipora capitata. MinION long reads were employed for scaffolding and complemented with short-read MiSeq sequences to permit complete genome assembly. The genome is approximately 4.

View Article and Find Full Text PDF

The isolate of Thalassotalea euphylliae H1 was collected from the surface of a Montipora capitata coral. The genome was assembled using long reads from a Nanopore MinION sequencer for scaffolding and complemented with short-read MiSeq sequences. The genome was approximately 4.

View Article and Find Full Text PDF

Recruitment via settlement of pelagic larvae is critical for the persistence of benthic marine populations. For many benthic invertebrates, larval settlement occurs in response to surface microbial films. Larvae of the serpulid polychaete Hydroides elegans can be induced to settle by single bacterial species.

View Article and Find Full Text PDF

The metalloenzyme, carbonic anhydrase (CA), catalyzes the reversible hydration of carbon dioxide into bicarbonate, and is responsible for biomineralization processes in animals. In the Annelida, the marine worms in the family Serpulidae are typified by the construction of calcium carbonate tubes. Hydroides elegans, a common member of warmwater biofouling communities around the world, provides an outstanding model for studies of calcification.

View Article and Find Full Text PDF

The effect of incorporation of silicone oils into a siloxane-polyurethane fouling-release coatings system was explored. Incorporation of phenylmethyl silicone oil has been shown to improve the fouling-release performance of silicone-based fouling-release coatings through increased interfacial slippage. The extent of improvement is highly dependent upon the type and composition of silicone oil used.

View Article and Find Full Text PDF

Hydroides elegans is a major fouling organism in tropical waters around the world, including Pearl Harbor, Hawaii. To determine the importance of initial surface characteristics on biofilm community composition and subsequent colonization by larvae of H. elegans, the settlement and recruitment of larvae to biofilmed surfaces with six different initial surface wettabilities were tested in Pearl Harbor.

View Article and Find Full Text PDF

Halide-permeable xerogel films prepared from sols containing 50 mol% aminopropyltriethoxysilane (APTES)/50 mol% tetraethoxysilane (TEOS) or 10 mol% APTES/90 mol% TEOS and 0.015 M selenoxide or telluride catalyst in the sol gave reduced settlement of cypris larvae of the barnacle Balanus amphitrite and larvae of the tubeworm Hydroides elegans in the presence of artificial seawater (ASW) and hydrogen peroxide (5-100 microM) relative to glass controls. Settlement of Ulva zoospores was lower on both the 50 mol% APTES/50 mol% TEOS and 10 mol% APTES/90 mol% TEOS xerogel formulations in comparison with glass controls with or without the added catalyst.

View Article and Find Full Text PDF

Much interest has focused on the role of microbial layers--biofilms--in stimulating attachment of invertebrates and algae to submerged marine surfaces. We investigated the influence of biofilms on the adhesion strength of settling invertebrates. Larvae of four species of biofouling invertebrate were allowed to attach to test surfaces that were either clean or coated with a natural biofilm.

View Article and Find Full Text PDF

The adhesion of six fouling organisms: the barnacle Balanus eburneus, the gastropod mollusc Crepidulafornicata, the bivalve molluscs Crassostrea virginica and Ostrea/Dendrostrea spp., and the serpulid tubeworms Hydroides dianthus and H. elegans, to 12 silicone fouling-release surfaces was examined.

View Article and Find Full Text PDF

Silicone coatings with critical surface tensions (CST) between 20 and 30 mN m-1 more easily release diverse types of biofouling than do materials of higher and lower CST. Oils added to these coatings selectively further diminish the attachment strengths of different marine fouling organisms, without significantly modifying the initial CST. In a search for the mechanisms of this improved biofouling resistance, the interfacial instabilities of four silicone coatings were characterised by comprehensive contact angle analyses, using up to 12 different diagnostic fluids selected to mimic the side chain chemistries of the common amino acids of bioadhesive proteins.

View Article and Find Full Text PDF