Publications by authors named "Brian Moroz"

We derived the first comprehensive organ dose library for Canadian pediatric and adult patients who underwent computed tomography (CT) scans between 1992 and 2019 to support epidemiological analysis of radiation risk. We calculated organ absorbed doses for Canadian CT patients in two steps. First, we modeled Computed Tomography Dose Index (CTDI) values by patient age, scan body part, and scan year for the scan period between 1992 and 2019 using national survey data conducted in Canada and partially the United Kingdom survey data as surrogates.

View Article and Find Full Text PDF

Lewy body dementia is the second most common neurodegenerative dementia after Alzheimer's disease. Disease-modifying therapies for this disabling neuropsychiatric condition are critically needed. To identify drugs associated with the risk of developing Lewy body dementia, we performed a population-based case-control study of 148 170 US Medicare participants diagnosed with Lewy body dementia between 1 January 2008 and 31 December 2014 and of 1 253 043 frequency-matched controls.

View Article and Find Full Text PDF

Ionizing radiation is one of the known risk factors for cataract development, however, there is still debate regarding the level of risk after low dose exposures. One of the largest sources of radiation exposure to the lens of the eye is diagnostic CT scans. The aim of this study was to examine whether ionizing radiation associated with head CT scans increases cataract risk in residents of Ontario, Canada.

View Article and Find Full Text PDF

Objective: We aimed to determine the incidence of major cardiovascular and cerebrovascular events in elderly patients with primary hyperparathyroidism (pHPT) and the impact of parathyroidectomy.

Summary Background Data: pHPT is underdiagnosed and undertreated in the United States. It is associated with increased cardiovascular disease risk, but its association with cerebrovascular disease risk is not well-established.

View Article and Find Full Text PDF

Since our previous publication of organ dose for the pediatric CT cohort in the UK, there have been questions about the magnitude of uncertainty in our dose estimates. We therefore quantified shared and unshared uncertainties in empirical CT parameters extracted from 1073 CT films (1978-2008) from 36 hospitals in the study and propagated these uncertainties into organ doses using Monte Carlo random sampling and NCICT organ dose calculator. The average of 500 median brain and marrow doses for the full cohort was 35 (95% confidence interval: 30-40) mGy and 6 (5-7) mGy, respectively.

View Article and Find Full Text PDF

In epidemiological studies, exposures of interest are often measured with uncertainties, which may be independent or correlated. Independent errors can often be characterized relatively easily while correlated measurement errors have shared and hierarchical components that complicate the description of their structure. For some important studies, Monte Carlo dosimetry systems that provide multiple realizations of exposure estimates have been used to represent such complex error structures.

View Article and Find Full Text PDF

This study provides a retrospective assessment of doses to 13 organs for the most common radiographic examinations conducted between the 1930s and 2010, taking into account typical technical parameters used for radiography during those years. This study is intended to be a resource on changes in medical diagnostic radiation exposure over time with a specific purpose of supporting retrospective epidemiological studies of radiation health risks. The authors derived organ doses to the brain, esophagus, thyroid, red bone marrow, lungs, breast, heart, stomach, liver, colon, urinary bladder, ovaries, and testes based on 14 common radiographic procedures and compared, when possible, with doses reported in the literature.

View Article and Find Full Text PDF

We developed computational methods and tools to assess organ doses for pediatric and adult patients undergoing computed tomography (CT) examinations. We used the International Commission on Radiological Protection (ICRP) reference pediatric and adult phantoms combined with the Monte Carlo simulation of a reference CT scanner to establish comprehensive organ dose coefficients (DC), organ absorbed dose per unit volumetric CT Dose Index (CTDIvol) (mGy/mGy). We also developed methods to estimate organ doses with tube current modulation techniques and size specific dose estimates.

View Article and Find Full Text PDF

The Thyrotoxicosis Therapy Follow-up Study (TTFUS) is comprised of 35,593 hyperthyroid patients treated from the mid-1940s through the mid-1960s. One objective of the TTFUS was to evaluate the long-term effects of high-dose iodine-131 ((131)I) treatment (1-4). In the TTFUS cohort, 23,020 patients were treated with (131)I, including 21,536 patients with Graves disease (GD), 1,203 patients with toxic nodular goiter (TNG) and 281 patients with unknown disease.

View Article and Find Full Text PDF

Most conventional risk analysis methods rely on a single best estimate of exposure per person, which does not allow for adjustment for exposure-related uncertainty. Here, we propose a Bayesian model averaging method to properly quantify the relationship between radiation dose and disease outcomes by accounting for shared and unshared uncertainty in estimated dose. Our Bayesian risk analysis method utilizes multiple realizations of sets (vectors) of doses generated by a two-dimensional Monte Carlo simulation method that properly separates shared and unshared errors in dose estimation.

View Article and Find Full Text PDF

To improve the estimates of organ doses from nuclear medicine procedures using (131)I, the authors calculated a comprehensive set of (131)I S values, defined as absorbed doses in target tissues per unit of nuclear transition in source regions, for different source and target combinations. The authors used the latest reference adult male and female voxel phantoms published by the International Commission on Radiological Protection (ICRP Publication 110) and the (131)I photon and electron spectra from the ICRP Publication 107 to perform Monte Carlo radiation transport calculations using MCNPX2.7 to compute the S values.

View Article and Find Full Text PDF

Dosimetic uncertainties, particularly those that are shared among subgroups of a study population, can bias, distort or reduce the slope or significance of a dose response. Exposure estimates in studies of health risks from environmental radiation exposures are generally highly uncertain and thus, susceptible to these methodological limitations. An analysis was published in 2008 concerning radiation-related thyroid nodule prevalence in a study population of 2,994 villagers under the age of 21 years old between August 1949 and September 1962 and who lived downwind from the Semipalatinsk Nuclear Test Site in Kazakhstan.

View Article and Find Full Text PDF

Lymphatic node chains of the human body are particularly difficult to realistically model in computational human phantoms. In the absence of a lymphatic node model, researchers have used the following surrogate tissues to calculate the radiation dose to the lymphatic nodes: blood vessels, muscle and the combination of the muscle and adipose tissues. In the present work, the authors investigated whether and in which extent the use of different surrogate tissues is appropriate to assess the lymph node dose, using a realistic model of lymphatic nodes that the authors recently reported.

View Article and Find Full Text PDF

We developed models of lymphatic nodes for six pediatric and two adult hybrid computational phantoms to calculate the lymphatic node dose estimates from external and internal radiation exposures. We derived the number of lymphatic nodes from the recommendations in International Commission on Radiological Protection (ICRP) Publications 23 and 89 at 16 cluster locations for the lymphatic nodes: extrathoracic, cervical, thoracic (upper and lower), breast (left and right), mesentery (left and right), axillary (left and right), cubital (left and right), inguinal (left and right) and popliteal (left and right), for different ages (newborn, 1-, 5-, 10-, 15-year-old and adult). We modeled each lymphatic node within the voxel format of the hybrid phantoms by assuming that all nodes have identical size derived from published data except narrow cluster sites.

View Article and Find Full Text PDF

The NOAA Hybrid Single-Particle Lagrangian Integrated Trajectory Model (HYSPLIT) was evaluated as a research tool to simulate the dispersion and deposition of radioactive fallout from nuclear tests. Model-based estimates of fallout can be valuable for use in the reconstruction of past exposures from nuclear testing, particularly where little historical fallout monitoring data are available. The ability to make reliable predictions about fallout deposition could also have significant importance for nuclear events in the future.

View Article and Find Full Text PDF

Deposition densities (Bq m(-2)) of all important dose-contributing radionuclides occurring in nuclear weapons testing fallout from tests conducted at Bikini and Enewetak Atolls (1946-1958) have been estimated on a test-specific basis for 32 atolls and separate reef islands of the Marshall Islands. A complete review of various historical and contemporary data, as well as meteorological analysis, was used to make judgments regarding which tests deposited fallout in the Marshall Islands and to estimate fallout deposition density. Our analysis suggested that only 20 of the 66 nuclear tests conducted in or near the Marshall Islands resulted in substantial fallout deposition on any of the 23 inhabited atolls.

View Article and Find Full Text PDF