Leaf economic spectrum (LES) relationships have been studied across many different plant lineages and at different organizational scales. However, the temporal stability of the LES relationships is largely unknown. We used the wild blueberry system with high genotypic diversity to test whether trait-trait relationships across genotypes demonstrate the same LES relationships found in the global database (GLOPNET) and whether they are stable across years.
View Article and Find Full Text PDFStochastic diffusion is the noisy and uncertain process through which dynamics like epidemics, or agents like animal species, disperse over a larger area. Understanding these processes is becoming increasingly important as we attempt to better prepare for potential pandemics and as species ranges shift in response to climate change. Unfortunately, modeling of stochastic diffusion is mostly done through inaccurate deterministic tools that fail to capture the random nature of dispersal or else through expensive computational simulations.
View Article and Find Full Text PDFTree species appear to prefer distinct climatic conditions, but the true nature of these preferences is obscured by species interactions and dispersal, which limit species' ranges. We quantified realized and potential thermal niches of 188 North American tree species to conduct a continental-scale test of the architecture of niches. We found strong and consistent evidence that species occurring at thermal extremes occupy less than three-quarters of their potential niches, and species' potential niches overlap at a mean annual temperature of ~12°C.
View Article and Find Full Text PDFIt is commonly thought that the biodiversity crisis includes widespread declines in the spatial variation of species composition, called biotic homogenization. Using a typology relating homogenization and differentiation to local and regional diversity changes, we synthesize patterns across 461 metacommunities surveyed for 10 to 91 years, and 64 species checklists (13 to 500+ years). Across all datasets, we found that no change was the most common outcome, but with many instances of homogenization and differentiation.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
November 2023
It has been proposed that climate adaptation research can benefit from an evolutionary approach. But related empirical research is lacking. We advance the evolutionary study of climate adaptation with two case studies from contemporary United States agriculture.
View Article and Find Full Text PDFBiotic responses to global change include directional shifts in organismal traits. Body size, an integrative trait that determines demographic rates and ecosystem functions, is thought to be shrinking in the Anthropocene. Here, we assessed the prevalence of body size change in six taxon groups across 5025 assemblage time series spanning 1960 to 2020.
View Article and Find Full Text PDFWe explore how integrating behavioural ecology and macroecology can provide fundamental new insight into both fields, with particular relevance for understanding ecological responses to rapid environmental change. We outline the field of macrobehaviour, which aims to unite these disciplines explicitly, and highlight examples of research in this space. Macrobehaviour can be envisaged as a spectrum, where behavioural ecologists and macroecologists use new data and borrow tools and approaches from one another.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
July 2023
While human activities are known to elicit rapid turnover in species composition through time, the properties of the species that increase or decrease their spatial occupancy underlying this turnover are less clear. Here, we used an extensive dataset of 238 metacommunity time series of multiple taxa spread across the globe to evaluate whether species that are more widespread (large-ranged species) differed in how they changed their site occupancy over the 10-90 years the metacommunities were monitored relative to species that are more narrowly distributed (small-ranged species). We found that on average, large-ranged species tended to increase in occupancy through time, whereas small-ranged species tended to decrease.
View Article and Find Full Text PDFPatterns of biodiversity provide insights into the processes that shape biological communities around the world. Variation in species diversity along biogeographical or ecological gradients, such as latitude or precipitation, can be attributed to variation in different components of biodiversity: changes in the total abundance (i.e.
View Article and Find Full Text PDFBiodiversity metrics often integrate data on the presence and abundance of multiple species. Yet our understanding of covariation between changes to the numbers of individuals, the evenness of species relative abundances, and the total number of species remains limited. Using individual-based rarefaction curves, we show how expected positive relationships among changes in abundance, evenness and richness arise, and how they can break down.
View Article and Find Full Text PDFBiotic homogenization-increasing similarity of species composition among ecological communities-has been linked to anthropogenic processes operating over the last century. Fossil evidence, however, suggests that humans have had impacts on ecosystems for millennia. We quantify biotic homogenization of North American mammalian assemblages during the late Pleistocene through Holocene (~30,000 ybp to recent), a timespan encompassing increased evidence of humans on the landscape (~20,000-14,000 ybp).
View Article and Find Full Text PDFSocial change in any society entails changes in both behaviours and institutions. We model a group-structured society in which the transmission of individual behaviour occurs in parallel with the selection of group-level institutions. We consider a cooperative behaviour that generates collective benefits for groups but does not spread between individuals on its own.
View Article and Find Full Text PDFThe species composition of plant and animal assemblages across the globe has changed substantially over the past century. How do the dynamics of individual species cause this change? We classified species into seven unique categories of temporal dynamics based on the ordered sequence of presences and absences that each species contributes to an assemblage time series. We applied this framework to 14,434 species trajectories comprising 280 assemblages of temperate marine fishes surveyed annually for 20 or more years.
View Article and Find Full Text PDFTrait-based ecology aims to understand the processes that generate the overarching diversity of organismal traits and their influence on ecosystem functioning. Achieving this goal requires simplifying this complexity in synthetic axes defining a trait space and to cluster species based on their traits while identifying those with unique combinations of traits. However, so far, we know little about the dimensionality, the robustness to trait omission and the structure of these trait spaces.
View Article and Find Full Text PDFRecent analyses have reported catastrophic global declines in vertebrate populations. However, the distillation of many trends into a global mean index obscures the variation that can inform conservation measures and can be sensitive to analytical decisions. For example, previous analyses have estimated a mean vertebrate decline of more than 50% since 1970 (Living Planet Index).
View Article and Find Full Text PDF