Publications by authors named "Brian McCornack"

Since the invasion of the sorghum aphid (Theobald), farmers in the sorghum ( L. Moench) production region in the Great Plains of the U.S.

View Article and Find Full Text PDF

Wheat () is a major cereal crop planted in the Southern Great Plains. This crop faces diverse pests that can affect their development and reduce yield productivity. For example, aphids are a significant pest in wheat, and their management relies on pesticides, which affect the sustainability and biodiversity of natural predators that prey on aphids.

View Article and Find Full Text PDF

Sorghum aphid, Melanaphis sorghi (Theobald) have become a major economic pest in sorghum causing 70% yield loss without timely insecticide applications. The overarching goal is to develop a monitoring system for sorghum aphids using remote sensing technologies to detect changes in plant-aphid density interactions, thereby reducing scouting time. We studied the effect of aphid density on sorghum spectral responses near the feeding site and on distal leaves from infestation and quantified potential systemic effects to determine if aphid feeding can be detected.

View Article and Find Full Text PDF

Aphid infestations are one of the primary causes of extensive damage to wheat and sorghum fields and are one of the most common vectors for plant viruses, resulting in significant agricultural yield losses. To address this problem, farmers often employ the inefficient use of harmful chemical pesticides that have negative health and environmental impacts. As a result, a large amount of pesticide is wasted on areas without significant pest infestation.

View Article and Find Full Text PDF

Aphid infestation poses a significant threat to crop production, rural communities, and global food security. While chemical pest control is crucial for maximizing yields, applying chemicals across entire fields is both environmentally unsustainable and costly. Hence, precise localization and management of aphids are essential for targeted pesticide application.

View Article and Find Full Text PDF

Increased global production of sorghum has the potential to meet many of the demands of a growing human population. Developing automation technologies for field scouting is crucial for long-term and low-cost production. Since 2013, sugarcane aphid (SCA) Melanaphis sacchari (Zehntner) has become an important economic pest causing significant yield loss across the sorghum production region in the United States.

View Article and Find Full Text PDF

Pest infestation causes significant crop damage during crop production, which reduces the crop yield in terms of quality and quantity. Accurate, precise, and timely information on pest infestation is a crucial aspect of integrated pest management practices. The current manual scouting methods are time-consuming and laborious, particularly for large fields.

View Article and Find Full Text PDF

Aphids that attack canola (Brassica napus L.) exhibit feeding preferences for different parts of canola plants, which may be associated with brassica-specific glucosinolates. However, this idea remains untested.

View Article and Find Full Text PDF

Stink bugs represent an increasing risk to soybean production in the Midwest region of the United States. The current sampling protocol for stink bugs in this region is tailored for population density estimation and thus is more relevant to research purposes. A practical decision-making framework with more efficient sampling effort for management of herbivorous stink bugs is needed.

View Article and Find Full Text PDF

Pollinators are undergoing a global decline. Although vital to pollinator conservation and ecological research, species-level identification is expensive, time consuming, and requires specialized taxonomic training. However, deep learning and computer vision are providing ways to open this methodological bottleneck through automated identification from images.

View Article and Find Full Text PDF

Sugarcane aphid Melanaphis sacchari Zehntner is a significant economic pest of grain sorghum in the United States. Effective monitoring and early detection are cornerstones for managing invasive pests. The recently developed binomial sequential sampling plan estimates sugarcane aphid economic thresholds (ETs) based on classification whether a 2-leaf sample unit has ≤ or ≥ 50 M.

View Article and Find Full Text PDF

Stink bugs (Hemiptera: Pentatomidae) are agricultural pests of increasing significance in the North Central Region of the United States, posing a threat to major crops such as soybean. Biological control can reduce the need for insecticides to manage these pests, but the parasitism of stink bugs by Tachinidae (Diptera) is poorly characterized in this region. The objective of this study was to evaluate the rate of parasitism of stink bugs by tachinids over 2 yr from nine states across the North Central Region.

View Article and Find Full Text PDF

The sugarcane aphid (Melanaphis sacchari Zehntner) is a significant economic pest of grain sorghum (Sorghum bicolor (L.) Moench) in the Southern United States. Current nominal and research-based economic thresholds are based on estimates of mean aphids per leaf.

View Article and Find Full Text PDF

Temperature has a strong influence on the development, survival, and fecundity of herbivorous arthropods, and it plays a key role in regulating the growth and development of their host plants. In addition, temperature affects the production of plant secondary chemicals as well as structural characteristics used for defense against herbivores. Thus, temperature has potentially important implications for host plant resistance.

View Article and Find Full Text PDF

Stink bugs are an emerging threat to soybean (Fabales: Fabaceae) in the North Central Region of the United States. Consequently, region-specific scouting recommendations for stink bugs are needed. The aim of this study was to characterize the spatial pattern and to develop sampling plans to estimate stink bug population density in soybean fields.

View Article and Find Full Text PDF

Stink bugs (Hemiptera: Pentatomidae) are an increasing threat to soybean (Fabales: Fabaceae) production in the North Central Region of the United States, which accounts for 80% of the country's total soybean production. Characterization of the stink bug community is essential for development of management programs for these pests. However, the composition of the stink bug community in the region is not well defined.

View Article and Find Full Text PDF

Remote sensing data that are efficiently used in ecological research and management are seldom used to study insect pest infestations in agricultural ecosystems. Here, we used multispectral satellite and aircraft data to evaluate the relationship between normalized difference vegetation index (NDVI) and Hessian fly (Mayetiola destructor) infestation in commercial winter wheat (Triticum aestivum) fields in Kansas, USA. We used visible and near-infrared data from each aerial platform to develop a series of NDVI maps for multiple fields for most of the winter wheat growing season.

View Article and Find Full Text PDF

Of the many ways biological control can be incorporated into Integrated Pest Management (IPM) programs, natural enemy thresholds are arguably most easily adopted by stakeholders. Integration of natural enemy thresholds into IPM programs requires ecological and cost/benefit crop production data, threshold model validation, and an understanding of the socioeconomic factors that influence stakeholder decisions about biological control. These thresholds are more likely to be utilized by stakeholders when integrated into dynamic web-based IPM decision support systems that summarize pest management data and push site-specific biological control management recommendations to decision-makers.

View Article and Find Full Text PDF

Monitoring of Hessian fly, Mayetiola destructor (Say) (Diptera: Cecidomyiidae), populations is important for targeted management methods. Also, effectiveness of monitoring efforts is critical to surveillance efforts in regions of the world without this pest. Current Hessian fly monitoring traps rely purely on a single attractant, the female sex pheromone, which is ineffective for monitoring females in the population.

View Article and Find Full Text PDF

Background: A 2-year, multi-state study was conducted to assess the benefits of using soybean seed treated with the neonicotinoid thiamethoxam to manage soybean aphid in the upper Midwestern USA and compare this approach with an integrated pest management (IPM) approach that included monitoring soybean aphids and treating with foliar-applied insecticide only when the economic threshold was reached. Concentrations of thiamethoxam in soybean foliage were also quantified throughout the growing season to estimate the pest management window afforded by insecticidal seed treatments.

Results: Both the IPM treatment and thiamethoxam-treated seed resulted in significant reductions in cumulative aphid days when soybean aphid populations reached threshold levels.

View Article and Find Full Text PDF

A laboratory experiment was conducted to evaluate direct and indirect effects of temperature on demographic traits and population growth of biotype 1 of the soybean aphid, Aphis glycines Matsumura. Our objectives were to better understand how temperature influences the expression of host plant resistance, quantify the individual and interactive effects of plant resistance and temperature on soybean aphid population growth, and generate thermal constants for predicting temperature-dependent development on both susceptible and resistant soybeans. To assess indirect (plant-mediated) effects, soybean aphids were reared under a range of temperatures (15-30 °C) on soybean seedlings from a line expressing a Rag1 gene for resistance, and life history traits were quantified and compared to those obtained for soybean aphids on a susceptible soybean line.

View Article and Find Full Text PDF

Corn earworm, Helicoverpa zea Boddie (Lepidoptera: Noctuidae), and fall armyworm, Spodoptera frugiperda J.E. Smith, are occasional pests in sorghum, Sorghum bicolor L.

View Article and Find Full Text PDF

There is increasing evidence that top-down controls have strong non-consumptive effects on herbivore populations. However, little is known about how these non-consumptive effects relate to bottom-up influences. Using a series of field trials, we tested how changes in top-down and bottom-up controls at the within-plant scale interact to increase herbivore suppression.

View Article and Find Full Text PDF

The soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), is an economically important pest of soybean, Glycine max (L.) Merrill, in the United States. Phenological information of A.

View Article and Find Full Text PDF

The soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), is currently the most important insect threat to soybean, Clycine max (L.) Merr., production in the North Central United States.

View Article and Find Full Text PDF