Int J Environ Res Public Health
August 2022
Agricultural Life Cycle Assessment (LCA) is an effective tool for the quantitative evaluation and analysis of agricultural materials production and operation activities in various stages of the agricultural system. Based on the concept of life cycle, it comprehensively summarizes the impact of agriculture on the environment, which is an effective tool to promote the sustainability and green development of agriculture. In recent years, agricultural LCA has been widely used in the agroecosystem for resource and environmental impacts analysis.
View Article and Find Full Text PDFStabilizing the global climate within safe bounds will require greenhouse gas (GHG) emissions to reach net zero within a few decades. Achieving this is expected to require removal of CO from the atmosphere to offset some hard-to-eliminate emissions. There is, therefore, a clear need for GHG accounting protocols that quantify the mitigation impact of CO removal practices, such as biochar sequestration, that have the potential to be deployed at scale.
View Article and Find Full Text PDFAlongside the steep reductions needed in fossil fuel emissions, natural climate solutions (NCS) represent readily deployable options that can contribute to Canada's goals for emission reductions. We estimate the mitigation potential of 24 NCS related to the protection, management, and restoration of natural systems that can also deliver numerous co-benefits, such as enhanced soil productivity, clean air and water, and biodiversity conservation. NCS can provide up to 78.
View Article and Find Full Text PDFForestland soils play vital role in regulating global soil greenhouse gas (GHG) budgets, but the interactive effect of the litter layer management and simulated nitrogen (N) deposition on these GHG flux has not been elucidated clearly in subtropical forestland. A field trial was conducted to study these effects by using litter removal method under 0 and 40 kg N ha yr addition in a subtropical forestland in Yingtan, Jiangxi Province, China. Soil CO emission was increased by N addition (18-24%) but decreased by litter removal (24-32%).
View Article and Find Full Text PDFGrazing of natural rangeland and seeded pasture is an important feeding strategy for the Canadian beef cattle industry. As a consequence, beef cattle population has a direct influence on the proportion of land base maintained as perennial forage, which in turn changes soil organic carbon (SOC) stocks. We examined historical relationships between the net change in SOC resulting from perennial/annual crop conversion and beef cattle populations.
View Article and Find Full Text PDFSnowmelt runoff often comprises the majority of annual runoff in the Canadian Prairies and a significant proportion of total nutrient loss from agricultural land to surface water. Our objective was to determine the effect of agroecosystem management on snowmelt runoff and nutrient losses from a long-term field experiment at Swift Current, SK. Runoff quantity, nutrient concentrations, and loads were estimated after a change in management from conventionally tilled wheat ( L.
View Article and Find Full Text PDFAdoption of no-till management on croplands has become a controversial approach for storing carbon in soil due to conflicting findings. Yet, no-till is still promoted as a management practice to stabilize the global climate system from additional change due to anthropogenic greenhouse gas emissions, including the 4 per mille initiative promoted through the UN Framework Convention on Climate Change. We evaluated the body of literature surrounding this practice, and found that SOC storage can be higher under no-till management in some soil types and climatic conditions even with redistribution of SOC, and contribute to reducing net greenhouse gas emissions.
View Article and Find Full Text PDFThe objective of the study was to determine the effect of type of pasture mix and grazing management on pasture productivity, animal response and soil organic carbon (SOC) level. Pasture was established in 2001 on 16 paddocks of 2.1 ha that had been primarily in wheat and summer fallow.
View Article and Find Full Text PDFWidespread global changes, including rising atmospheric CO concentrations, climate warming and loss of biodiversity, are predicted for this century; all of these will affect terrestrial ecosystem processes like plant litter decomposition. Conversely, increased plant litter decomposition can have potential carbon-cycle feedbacks on atmospheric CO levels, climate warming and biodiversity. But predicting litter decomposition is difficult because of many interacting factors related to the chemical, physical and biological properties of soil, as well as to climate and agricultural management practices.
View Article and Find Full Text PDFGrazing potentially alters grassland ecosystem carbon (C) and nitrogen (N) storage and cycles, however, the overall direction and magnitude of such alterations are poorly understood on the Northern Great Plains (NGP). By synthesizing data from multiple studies on grazed NGP ecosystems, we quantified the response of 30 variables to C and N pools and fluxes to grazing using a comprehensive meta-analysis method. Results showed that grazing enhanced soil C (5.
View Article and Find Full Text PDFSoil surface texture is an important environmental factor that influences crop productivity because of its direct effect on soil water and complex interactions with other environmental factors. Using 30-year data, an agricultural system model (DSSAT-CERES-Wheat) was calibrated and validated. After validation, the modelled yield and water use (WU) of spring wheat (Triticum aestivum L.
View Article and Find Full Text PDFDuring the past four decades of crop production in the prairie region of Canada, there has been a dramatic shift from conventional management (CM) to conservation tillage management in which one or more tillage operations has been replaced by herbicide application. To determine whether this management shift has affected the quality of snowmelt runoff, field-scale side-by-side runoff watersheds were used in a 6-yr study. Herbicide concentrations and fluxes in snowmelt runoff water from CM and zero-till management (ZTM) systems were compared relative to an organic production system used as the control.
View Article and Find Full Text PDFBackground: Shorter growing season and water stress near wheat maturity are the main factors that presumably limit the yield potential of spring wheat due to late seeding in Saskatchewan, Canada. Advancing seeding dates can be a strategy to help producers mitigate the impact of climate change on spring wheat. It is unknown, however, how early farmers can seed while minimizing the risk of spring frost damage and the soil and machinery constraints.
View Article and Find Full Text PDFTo assess tradeoffs between environmental sustainability and changes in food production on agricultural land in Canada the Unified Livestock Industry and Crop Emissions Estimation System (ULICEES) was developed. It incorporates four livestock specific GHG assessments in a single model. To demonstrate the application of ULICEES, 10% of beef cattle protein production was assumed to be displaced with an equivalent amount of pork protein.
View Article and Find Full Text PDFThe fallout radionuclide cesium-137 ((137)Cs) has been successfully used in soil erosion studies worldwide. However, discrepancies often exist between the erosion rates estimated using various conversion models. As a result, there is often confusion in the use of the various models and in the interpretation of the data.
View Article and Find Full Text PDF