The regulation of cell physiology depends largely upon interactions of functionally distinct proteins and cellular components. These interactions may be transient or long-lived, but often affect protein motion. Measurement of protein dynamics within a cellular environment, particularly while perturbing protein function with small molecules, may enable dissection of key interactions and facilitate drug discovery; however, current approaches are limited by throughput with respect to data acquisition and analysis.
View Article and Find Full Text PDFThe regulation of transporters by nutrient-responsive signaling pathways allows cells to tailor nutrient uptake to environmental conditions. We investigated the role of feedback generated by transporter regulation in the budding yeast phosphate-responsive signal transduction (PHO) pathway. Cells starved for phosphate activate feedback loops that regulate high- and low-affinity phosphate transport.
View Article and Find Full Text PDFCytosine methylation is common, but not ubiquitous, in eukaryotes. Mammals and the fungus Neurospora crassa have about 2-3% of cytosines methylated. In mammals, methylation is almost exclusively in the under-represented CpG dinucleotides, and most CpGs are methylated whereas in Neurospora, methylation is not preferentially in CpG dinucleotides and the bulk of the genome is unmethylated.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2002
One can imagine a variety of mechanisms that should result in self-perpetuating biological states. It is generally assumed that cytosine methylation is propagated in eukaryotes by enzymes that specifically methylate hemimethylated symmetrical sites (e.g.
View Article and Find Full Text PDF