Background: Latency remains a major obstacle to finding a cure for HIV despite the availability of antiretroviral therapy. Due to virus dormancy, limited biomarkers are available to identify latent HIV-infected cells. Profiling of individual HIV-infected cells is needed to explore potential latency biomarkers and to study the mechanisms of persistence that maintain the HIV reservoir.
View Article and Find Full Text PDFAntagonism of the mGluR2 receptor has the potential to provide therapeutic benefit to cognitive disorders by elevating synaptic glutamate, the primary excitatory neurotransmitter in the brain. Selective antagonism of the mGluR2 receptor, however, has so far been elusive, given the very high homology of this receptor with mGluR3, particularly at the orthosteric binding site. Given that inhibition of mGluR3 has been implicated in undesired effects, we sought to identify selective mGluR2 negative allosteric modulators.
View Article and Find Full Text PDFThe measurement of receptor occupancy (RO) using positron emission tomography (PET) has been instrumental in guiding discovery and development of CNS directed therapeutics. We and others have investigated muscarinic acetylcholine receptor 4 (M4) positive allosteric modulators (PAMs) for the treatment of symptoms associated with neuropsychiatric disorders. In this article, we describe the synthesis, in vitro, and in vivo characterization of a series of central pyridine-related M4 PAMs that can be conveniently radiolabeled with carbon-11 as PET tracers for the in vivo imaging of an allosteric binding site of the M4 receptor.
View Article and Find Full Text PDFN-methyl-d-aspartate receptors (NMDARs) mediate glutamatergic signaling that is critical to cognitive processes in the central nervous system, and NMDAR hypofunction is thought to contribute to cognitive impairment observed in both schizophrenia and Alzheimer's disease. One approach to enhance the function of NMDAR is to increase the concentration of an NMDAR coagonist, such as glycine or d-serine, in the synaptic cleft. Inhibition of alanine-serine-cysteine transporter-1 (Asc-1), the primary transporter of d-serine, is attractive because the transporter is localized to neurons in brain regions critical to cognitive function, including the hippocampus and cortical layers III and IV, and is colocalized with d-serine and NMDARs.
View Article and Find Full Text PDFInvestigation of a novel amino-aza-benzimidazolone structural class of positive allosteric modulators (PAMs) of metabotropic glutamate receptor 2 (mGluR2) identified [2.2.2]-bicyclic amine 12 as an intriguing lead structure due to its promising physicochemical properties and lipophilic ligand efficiency (LLE).
View Article and Find Full Text PDFOptimization of a benzimidazolone template for potency and physical properties revealed 5-aryl-1,3-dihydro-2H-imidazo[4,5-b]pyridin-2-ones as a key template on which to develop a new series of mGlu2 positive allosteric modulators (PAMs). Systematic investigation of aryl-SAR led to the identification of compound 27 as a potent and highly selective mGlu2 PAM with sufficient pharmacokinetics to advance to preclinical models of psychosis. Gratifyingly, compound 27 showed full efficacy in the PCP- and MK-801-induced hyperlocomotion assay in rats at CSF concentrations consistent with mGlu2 PAM potency.
View Article and Find Full Text PDFPrevious work has suggested that activation of mGlu5 receptor augments NMDA receptor function and thereby may constitute a rational approach addressing glutamate hypofunction in schizophrenia and a target for novel antipsychotic drug development. Here, we report the in vitro activity, in vivo efficacy and safety profile of 5PAM523 (4-Fluorophenyl){(2R,5S)-5-[5-(5-fluoropyridin-2-yl)-1,2,4-oxadiazol-3-yl]-2-methylpiperidin-1-yl}methanone), a structurally novel positive allosteric modulator selective of mGlu5. In cells expressing human mGlu5 receptor, 5PAM523 potentiated threshold responses to glutamate in fluorometric calcium assays, but does not have any intrinsic agonist activity.
View Article and Find Full Text PDFNovel oxazolobenzimidazoles are described as potent and selective positive allosteric modulators of the metabotropic glutamate receptor 2. The discovery of this class and optimization of its physical and pharmacokinetic properties led to the identification of potent and orally bioavailable compounds (20 and 21) as advanced leads. Compound 20 (TBPCOB) was shown to have robust activity in a PCP-induced hyperlocomotion model in rat, an assay responsive to clinical antipsychotic treatments for schizophrenia.
View Article and Find Full Text PDFHit to lead optimization of (5R)-5-hexyl-3-phenyl-1,3-oxazolidin-2-one as a positive allosteric modulator of mGluR2 is described. Improvements in potency and metabolic stability were achieved through SAR on both ends of the oxazolidinone. An optimized lead compound was found to be brain penetrant and active in a rat ketamine-induced hyperlocomotion model for antipsychotic activity.
View Article and Find Full Text PDFA novel series of arylindenopyrimidines were identified as A(2A) and A(1) receptor antagonists. The series was optimized for in vitro activity by substituting the 8- and 9-positions with methylene amine substituents. The compounds show excellent activity in mouse models of Parkinson's disease when dosed orally.
View Article and Find Full Text PDFRecent evidence suggests that some atypical antipsychotic drugs may protect against oxidative stress and consequent neurodegeneration by mechanisms that remain unclear. Using the neuron-like rat pheochromocytoma (PC-12) cell line, Clozapine and N-desmethylclozapine were tested for their ability to protect against cell death due to oxidative stress induced by hydrogen peroxide (H(2)O(2)). These drugs demonstrated significant protection of PC-12 cells, as measured by both the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrasodium bromide (MTT) and Alamar Blue cell viability assays.
View Article and Find Full Text PDFPlasminogen activators are used in thrombolytic stroke therapy. However, it is increasingly recognized that they have other actions besides fibrinolysis. In this study, we assess potential pro-inflammatory effects of tissue-type plasminogen activator (tPA) and urokinase-type plasminogen activator (uPA) in rat cortical astrocytes.
View Article and Find Full Text PDF