Conductive metal-organic frameworks are an emerging class of three-dimensional architectures with degrees of modularity, synthetic flexibility and structural predictability that are unprecedented in other porous materials. However, engendering long-range charge delocalization and establishing synthetic strategies that are broadly applicable to the diverse range of structures encountered for this class of materials remain challenging. Here, we report the synthesis of K Fe(BDP) (0 ≤ x ≤ 2; BDP = 1,4-benzenedipyrazolate), which exhibits full charge delocalization within the parent framework and charge mobilities comparable to technologically relevant polymers and ceramics.
View Article and Find Full Text PDFThe elimination of specific environmental and industrial contaminants, which are hazardous at only part per million to part per billion concentrations, poses a significant technological challenge. Adsorptive materials designed for such processes must be engendered with an exceptionally high enthalpy of adsorption for the analyte of interest. Rather than relying on a single strong interaction, the use of multiple chemical interactions is an emerging strategy for achieving this requisite physical parameter.
View Article and Find Full Text PDFMetal-organic frameworks can offer pore geometries that are not available in zeolites or other porous media, facilitating distinct types of shape-based molecular separations. Here, we report Fe2(BDP)3 (BDP(2-) = 1,4-benzenedipyrazolate), a highly stable framework with triangular channels that effect the separation of hexane isomers according to the degree of branching. Consistent with the varying abilities of the isomers to wedge along the triangular corners of the structure, adsorption isotherms and calculated isosteric heats indicate an adsorption selectivity order of n-hexane > 2-methylpentane > 3-methylpentane > 2,3-dimethylbutane ≈ 2,2-dimethylbutane.
View Article and Find Full Text PDFShields up! Post-synthetic modification of the secondary building units in the metal-organic framework UiO-66 (Zr6O4(OH)4(O2CR)12) by dehydration and subsequent grafting of LiOtBu yields a solid Li(+) electrolyte with a conductivity of 1.8×10(-5) S cm(-1) at 293 K. As the grafting leads to screening of the anionic charge, the activation energy for ionic conduction is significantly lower than when Li(+) is introduced through deprotonation.
View Article and Find Full Text PDFTwo new metal-organic frameworks, M(2)(dobpdc) (M = Zn (1), Mg (2); dobpdc(4-) = 4,4'-dioxido-3,3'-biphenyldicarboxylate), adopting an expanded MOF-74 structure type, were synthesized via solvothermal and microwave methods. Coordinatively unsaturated Mg(2+) cations lining the 18.4-Å-diameter channels of 2 were functionalized with N,N'-dimethylethylenediamine (mmen) to afford Mg(2)(dobpdc)(mmen)(1.
View Article and Find Full Text PDFThe uptake of LiO(i)Pr in Mg(2)(dobdc) (dobdc(4-) = 1,4-dioxido-2,5-benzenedicarboxylate) followed by soaking in a typical electrolyte solution leads to the new solid lithium electrolyte Mg(2)(dobdc)·0.35LiO(i)Pr·0.25LiBF(4)·EC·DEC (EC = ethylene carbonate; DEC = diethyl carbonate).
View Article and Find Full Text PDFWe examine the photophysics of a colloidal suspension of C(60) particles in a micellar solution of Triton X-100 and water, prepared via a new synthesis which allows high-concentration suspensions. The particle sizes are characterized by transmission electron microscopy and dynamic light scattering and found to be somewhat polydisperse in the range of 10-100 nm. The suspension is characterized optically by UV-vis spectroscopy, femtosecond transient absorption spectroscopy, laser flash photolysis, and z-scan.
View Article and Find Full Text PDF