This study evaluated the biological activity of hydroxylated derivatives of butyrate as inductors of antimicrobial peptides (AMPs) in murine bone marrow-derived macrophages . A differential modulation of AMP expression by the hydroxylated derivatives of butyrate is shown. The ability of sodium 4-hydroxybutyrate to upregulate AMP expression through a histone deacetylase inhibitory-independent mechanism, and to promote increased resistance to bacterial contamination are also shown.
View Article and Find Full Text PDFMounting evidence suggests that site-appropriate loading of implanted extracellular matrix (ECM) bioscaffolds and the surrounding microenvironment is an important tissue remodeling determinant, although the role at the cellular level in ECM-mediated skeletal muscle remodeling remains unknown. This study evaluates crosstalk between progenitor cells and macrophages during mechanical loading in ECM-mediated skeletal muscle repair. Myoblasts were exposed to solubilized ECM bioscaffolds and were mechanically loaded at 10% strain, 1 Hz for 5 h.
View Article and Find Full Text PDFExtracellular matrix (ECM)-derived bioscaffolds have been shown to elicit tissue repair through retention of bioactive signals. Given that the adventitia of large blood vessels is a richly vascularized microenvironment, we hypothesized that perivascular ECM contains bioactive signals that influence cells of blood vessel lineages. ECM bioscaffolds were derived from decellularized human and porcine aortic adventitia (hAdv and pAdv, respectively) and then shown have minimal DNA content and retain elastin and collagen proteins.
View Article and Find Full Text PDFAcellular bioscaffolds composed of extracellular matrix (ECM) have been effectively used to promote functional tissue remodeling in both preclinical and clinical studies of volumetric muscle loss, but the mechanisms that contribute to such outcomes are not fully understood. Thirty-two C57bl/6 mice were divided into eight groups of four animals each. A critical-sized defect was created in the quadriceps muscle and was repaired with a small intestinal submucosa ECM bioscaffold or left untreated.
View Article and Find Full Text PDFThe host response to biomaterials is a critical determinant of their success or failure in tissue-repair applications. Macrophages are among the first responders in the host response to biomaterials and have been shown to be predictors of downstream tissue remodeling events. Biomaterials composed of mammalian extracellular matrix (ECM) in particular have been shown to promote distinctive and constructive remodeling outcomes when compared to their synthetic counterparts, a property that has been largely attributed to their ability to modulate the host macrophage response.
View Article and Find Full Text PDFAcellular biologic scaffolds derived from extracellular matrix have been investigated in preclinical and clinical studies as a regenerative medicine approach for volumetric muscle loss treatment. The present manuscript provides a review of previous studies supporting the use of extracellular matrix derived biologic scaffolds for the promotion of functional skeletal muscle tissue formation that is contractile and innervated. The manuscript also identifies key mechanisms that have been associated with ECM-mediated skeletal muscle repair, and provides hypotheses as to why there have been variable outcomes, ranging from successful to unsatisfactory, associated with ECM bioscaffold implantation in the skeletal muscle injury microenvironment.
View Article and Find Full Text PDFAnn Transl Med
October 2015
Tissue engineering and regenerative medicine-based strategies for the reconstruction of functional skeletal muscle tissue have included cellular and acellular approaches. The use of acellular biologic scaffold material as a treatment for volumetric muscle loss (VML) in five patients has recently been reported with a generally favorable outcome. Further studies are necessary for a better understanding of the mechanism(s) behind acellular bioscaffold-mediated skeletal muscle repair, and for combination cell-based/bioscaffold based approaches.
View Article and Find Full Text PDFBackground: Electrodiagnosis can reveal the nerve and muscle changes following surgical placement of an extracellular matrix (ECM) bioscaffold for treatment of volumetric muscle loss (VML).
Objective: The purpose of this study was to characterize nerve conduction study (NCS) and electromyography (EMG) changes following ECM bioscaffold placement in individuals with VML. The ability of presurgical NCS and EMG to be used as a tool to help identify candidates who are likely to display improvements postsurgically also was explored.
The most commonly used tissue engineering approach includes the ex vivo combination of site-appropriate cell(s) and scaffold material(s) to create three-dimensional constructs for tissue replacement or reconstruction. These three-dimensional combinations are typically subjected to a period of culture and conditioning (i.e.
View Article and Find Full Text PDFRegenerative medicine, a multi-disciplinary approach that seeks to restore form and function to damaged or diseased tissues and organs, has evolved significantly during the past decade. By adapting and integrating fundamental knowledge from cell biology, polymer science, and engineering, coupled with an increasing understanding of the mechanisms which underlie the pathogenesis of specific diseases, regenerative medicine has the potential for innovative and transformative therapies for heretofore unmet medical needs. However, the translation of novel technologies from the benchtop to animal models and clinical settings is non-trivial and requires an understanding of the mechanisms by which the host will respond to these novel therapeutic approaches.
View Article and Find Full Text PDFThe regenerative healing response of injured skeletal muscle is dependent upon a heterogeneous population of responding macrophages, which show a phenotypic transition from the pro-inflammatory M1 to the alternatively activated and constructive M2 phenotype. Biologic scaffolds derived from mammalian extracellular matrix (ECM) have been used for the repair and reconstruction of a variety of tissues, including skeletal muscle, and have been associated with an M2 phenotype and a constructive and functional tissue response. The mechanism(s) behind in-vivo macrophage phenotype transition in skeletal muscle and the enhanced M2:M1 ratio associated with ECM bioscaffold use in-vivo are only partially understood.
View Article and Find Full Text PDFBiologic scaffolds composed of naturally occurring extracellular matrix (ECM) can provide a microenvironmental niche that alters the default healing response toward a constructive and functional outcome. The present study showed similarities in the remodeling characteristics of xenogeneic ECM scaffolds when used as a surgical treatment for volumetric muscle loss in both a preclinical rodent model and five male patients. Porcine urinary bladder ECM scaffold implantation was associated with perivascular stem cell mobilization and accumulation within the site of injury, and de novo formation of skeletal muscle cells.
View Article and Find Full Text PDFThe well-recognized ability of skeletal muscle for functional and structural regeneration following injury is severely compromised in degenerative diseases and in volumetric muscle loss. Tissue engineering and regenerative medicine strategies to support muscle reconstruction have typically been cell-centric with approaches that involve the exogenous delivery of cells with myogenic potential. These strategies have been limited by poor cell viability and engraftment into host tissue.
View Article and Find Full Text PDFThe endogenous chemotaxis of cells toward sites of tissue injury and/or biomaterial implantation is an important component of the host response. Implanted biomaterials capable of recruiting host stem/progenitor cells to a site of interest may obviate challenges associated with cell transplantation. An assay for the identification and quantification of chemotaxis induced by surgically placed biologic scaffolds composed of extracellular matrix is described herein.
View Article and Find Full Text PDFApproximately 285 million people worldwide suffer from diabetes, with insulin supplementation as the most common treatment measure. Regenerative medicine approaches such as a bioengineered pancreas has been proposed as potential therapeutic alternatives. A bioengineered pancreas will benefit from the development of a bioscaffold that supports and enhances cellular function and tissue development.
View Article and Find Full Text PDFVolumetric muscle loss (VML) resulting from traumatic accidents, tumor ablation, or degenerative disease is associated with limited treatment options and high morbidity. The lack of a reliable and reproducible animal model of VML has hindered the development of effective therapeutic strategies. The present study describes a critical-sized excisional defect within the mouse quadriceps muscle that results in an irrecoverable volumetric defect.
View Article and Find Full Text PDFBiologic scaffolds composed of mammalian extracellular matrix (ECM) are routinely used for the repair and reconstruction of injured or missing tissues in a variety of pre-clinical and clinical applications. However, the structural and functional outcomes have varied considerably. An important variable of xenogeneic biologic scaffolds is the age of the animal from which the ECM is derived.
View Article and Find Full Text PDFParathyroid hormone-related protein (PTHrP) contains a classical bipartite nuclear localization signal. Nuclear PTHrP induces proliferation of arterial vascular smooth muscle cells (VSMC). In the arterial wall, PTHrP is markedly up-regulated in response to angioplasty and promotes arterial restenosis.
View Article and Find Full Text PDFObjective: Adenoviral delivery of hepatocyte growth factor (HGF) to rodent islets improves islet graft survival and function, markedly reducing the number of islets required to achieve glucose control. Here, we asked whether these prior observations in rodent models extend to nonhuman primate (NHP) islets.
Research Design And Methods: NHP islets were transduced with murine (Ad.
Parathyroid hormone-related protein (PTHrP) is present in vascular smooth muscle (VSM), is markedly upregulated in response to arterial injury, is essential for normal VSM proliferation, and also markedly accentuates neointima formation following rat carotid angioplasty. PTHrP contains a nuclear localization signal (NLS) through which it enters the nucleus and leads to marked increases in retinoblastoma protein (pRb) phosphorylation and cell cycle progression. Our goal was to define key cell cycle molecules upstream of pRb that mediate cell cycle acceleration induced by PTHrP.
View Article and Find Full Text PDF