Publications by authors named "Brian M Leonard"

Anisotropic materials with low symmetries hold significant promise for next-generation electronic and quantum devices. 2M-WS, which is a candidate for topological superconductivity, has garnered considerable interest. However, a comprehensive understanding of how its anisotropic features contribute to unconventional superconductivity, along with a simple, reliable method to identify its crystal orientation, remains elusive.

View Article and Find Full Text PDF

Leveraging the reciprocal-space proximity effect between superconducting bulk and topological surface states (TSSs) offers a promising way to topological superconductivity. However, elucidating the mutual influence of bulk and TSSs on topological superconductivity remains a challenge. Here, we report pioneering transport evidence of a thickness-dependent transition from conventional to unconventional superconductivity in 2M-phase WS (2M-WS).

View Article and Find Full Text PDF

The neuroinflammatory cascade triggered by traumatic brain injury (TBI) represents a clinically important point for therapeutic intervention. Neuroinflammation generates oxidative stress in the form of high-energy reactive oxygen and nitrogen species, which are key mediators of TBI pathology. The role of the blood-brain barrier (BBB) is essential for proper neuronal function and is vulnerable to oxidative stress.

View Article and Find Full Text PDF

The functionalization of semiconductor nanocrystals, quantum dots (QDs), with small organic molecules has been studied extensively to gain better knowledge on how to tune the electronic, optical and chiroptical properties of QDs. Chiral QDs have progressively emerged as key materials in a vast range of applications including biosensing and biorecognition, imaging, asymmetric catalysis, optoelectronic devices, and spintronics. To engage the full potential of the unique properties of chiral nanomaterials and be able to prepare them with tailorable chiroptical characteristics, it is essential to understand how chirality is rendered from chiral molecular ligands at the surface of nanocrystals to the electronic states of QDs.

View Article and Find Full Text PDF

Research and catalytic testing of platinum group transition metal carbides have been extremely limited due to a lack of reliable, simple synthetic approaches. Powder samples have been reported to phase separately above 1%, and only thin-film samples have been reported to have appreciable amounts of precious metal doping. Herein, we demonstrated, through the simple co-precipitation of Pd and W or Mo precursors and their subsequent annealing, the possibility to readily form ternary carbide powders.

View Article and Find Full Text PDF

Despite its complex structure, coal has shown to be a promising precursor for graphene synthesis by chemical vapor deposition (CVD). However, the presence of heteroatoms and aliphatic chains in coal can lead to defects in the graphene lattice, preventing the formation of pristine graphene layers. Therefore, the goal of this study was to formulate a multistep coal fractionation scheme to extract and characterize the most aromatic fractions and explore their potential as graphene precursors.

View Article and Find Full Text PDF

Functionalization of colloidal quantum dots (QDs) with chiral cysteine derivatives by phase-transfer ligand exchange proved to be a simple yet powerful method for the synthesis of chiral, optically active QDs regardless of their size and chemical composition. Here, we present induction of chirality in CdSe by thiol-free chiral carboxylic acid capping ligands (l- and d-malic and tartaric acids). Our circular dichroism (CD) and infrared experimental data showed how the presence of a chiral carboxylic acid capping ligand on the surface of CdSe QDs was necessary but not sufficient for the induction of optical activity in QDs.

View Article and Find Full Text PDF

Transition metal carbides including chromium, molybdenum, and tungsten are of particular interest as renewable energy catalysts due to their low cost and abundance. While several single metal carbide systems form multiple phases with different compositions and crystal structures, most of these materials are not as well studied due to their limited synthetic approaches and instability. By taking advantage of a low temperature salt flux synthetic method, these unique phases can be more easily synthesized and separated as phase pure materials.

View Article and Find Full Text PDF

L-cysteine derivatives induce and modulate the optical activity of achiral cadmium selenide (CdSe) and cadmium sulfide (CdS) quantum dots (QDs). Remarkably, N-acetyl-L-cysteine-CdSe and L-homocysteine-CdSe as well as N-acetyl-L-cysteine-CdS and L-cysteine-CdS showed "mirror-image" circular dichroism (CD) spectra regardless of the diameter of the QDs. This is an example of the inversion of the CD signal of QDs by alteration of the ligand's structure, rather than inversion of the ligand's absolute configuration.

View Article and Find Full Text PDF

Nanostructured metal carbides are of particular interest because of their potential as high surface area, low-cost catalysts. By taking advantage of a salt-flux synthesis method, multiple carbide compounds were synthesized at low temperatures providing a pathway to nanosized materials. To better understand the reaction mechanism, vanadium carbide (V8C7) synthesis was monitored by quenching samples at 100 °C intervals and analyzed by multiple spectroscopic methods.

View Article and Find Full Text PDF

Molybdenum carbide has been proposed as a possible alternative to platinum for catalyzing the hydrogen evolution reaction (HER). Previous studies were limited to only one phase, β-Mo2C with an Fe2N structure. Here, four phases of Mo-C were synthesized and investigated for their electrocatalytic activity and stability for HER in acidic solution.

View Article and Find Full Text PDF

Free-base and nickel porphyrin-diaminopurine conjugates were formed by hydrogen-bond directed assembly on single-stranded oligothymidine templates of different lengths into helical multiporphyrin nanoassemblies with highly modular structural and chiroptical properties. Large red-shifts of the Soret band in the UV/Vis spectroscopy confirmed strong electronic coupling among assembled porphyrin-diaminopurine units. Slow annealing rates yielded preferentially right-handed nanostructures, whereas fast annealing yielded left-handed nanostructures.

View Article and Find Full Text PDF

Chiral thiol capping ligands L- and D-cysteines induced modular chiroptical properties in achiral cadmium selenide quantum dots (CdSe QDs). Cys-CdSe prepared from achiral oleic acid capped CdSe by postsynthetic ligand exchange displayed size-dependent electronic circular dichroism (CD) and circularly polarized luminescence (CPL). Opposite CPL signals were measured for the CdSe QDs capped with D- and L-cysteine.

View Article and Find Full Text PDF

Multiple phases of molybdenum carbide have been synthesized using a unique amine-metal oxide composite material. By combining molybdenum oxide and an amine, a templated precursor is formed which can be thermally decomposed to form molybdenum carbide with control over the structure and morphology of the nano-sized products.

View Article and Find Full Text PDF

Chemists rely on a toolbox of robust chemical transformations for selectively modifying molecules with spatial and functional precision to make them more complex in a controllable and predictable manner. This manuscript describes proof-of-principle experiments for a conceptually analogous strategy involving the selective, stepwise, and spatially controlled modification of inorganic nanostructures. The key concept is orthogonal reactivity: one component of a multicomponent system reacts with a particular reagent under a specific set of conditions while the others do not, even though they are all present together in the same reaction vessel.

View Article and Find Full Text PDF

Understanding how solids form is a challenging task, and few strategies allow for the elucidation of reaction pathways that are useful for designing new solids. Here, we describe an unusual multistep reaction pathway that leads to the formation of AuCuSn(2), a new ternary intermetallic compound that was discovered as nanocrystals using a low-temperature solution route. The formation of AuCuSn(2) using a modified polyol process occurs through a multistep pathway that was elucidated by taking aliquots throughout the course of the reaction and studying the products using a variety of techniques.

View Article and Find Full Text PDF

Ternary intermetallic compounds, which possess a wide variety of important properties with both academic and technological relevance, are typically synthesized using traditional high-temperature methods. Here, we demonstrate that the polyol method, which is used extensively to synthesize nanocrystals and nanocrystalline powders of metals and simple binary compounds, serves as an effective low-temperature exploratory medium for synthesizing new ordered ternary intermetallics as nanocrystals. Accordingly, we describe the synthesis and structural characterization of AuCuSn2 and AuNiSn2, which adopt an ordered NiAs-type superstructure that is not observed using equilibrium synthetic methods.

View Article and Find Full Text PDF

Intermetallic compounds and alloys are traditionally synthesized by heating mixtures of metal powders to high temperatures for long periods of time. A low-temperature solution-based alternative has been developed, and this strategy exploits the enhanced reactivity of nanoparticles and the nanometer diffusion distances afforded by binary nanocomposite precursors. Prereduced metal nanoparticles are combined in known ratios, and they form nanomodulated composites that rapidly transform into intermetallics and alloys upon heating at low temperatures.

View Article and Find Full Text PDF

A simple, fast, and robust approach to colloidal assembly on patterned surfaces was developed. The approach involves the rapid settling and dewetting of suspensions of spherical colloids on lithographically templated surfaces. Using this method, we can quickly and easily fabricate close-packed colloidal crystal microarrays of both silica and polystyrene spheres that range in size from 500 nm to 4.

View Article and Find Full Text PDF