Chronic lesions in the limbs of farm animals cause lameness due to chronic infection and inflammation. Exploratory treatments for chronic wounds in humans may be suitable for adaptation into the field of animal care. Specifically, antimicrobial linear polysaccharides like oxidized regenerated cellulose (ORC) and chitin/chitosan are biodegradable hemostats that are being explored to promote healing of chronic wounds but have not been directly compared using the same biological specimen.
View Article and Find Full Text PDFThe pen, or gladius, of the squid is an internalized shell. It serves as a site of attachment for important muscle groups and as a protective barrier for the visceral organs. The pen's durability and flexibility are derived from its unique composition of chitin and protein.
View Article and Find Full Text PDFDC electric fields (EFs) can often induce cellular polarity, and direct migration of cells toward one of the electrical poles. The mechanism(s) by which cells sense weak EFs is not established. We present here a molecular flux model to describe electromigration of plasma membrane macromolecules and compare its predictions to electromigration of a lipid-anchored surface protein, tdTomato-GPI, under different experimental conditions.
View Article and Find Full Text PDFWeak external electric fields (EFs) polarize cellular structure and direct most migrating cells (galvanotaxis) toward the cathode, making it a useful tool during tissue engineering and for healing epidermal wounds. However, the biophysical mechanisms for sensing weak EFs remain elusive. We have reinvestigated the mechanism of cathode-directed water flow (electro-osmosis) in the boundary layer of cells, by reducing it with neutral, viscous polymers.
View Article and Find Full Text PDF