Biol Psychiatry Cogn Neurosci Neuroimaging
December 2024
Mindfulness has gained widespread recognition for its benefits to mental health, cognitive performance, and wellbeing. However, the multifaceted nature of mindfulness, encompassing elements like attentional focus, emotional regulation, and present-moment awareness, complicates its definition and measurement. A key component that may underlie its broad benefits is equanimity - the ability to maintain an open and non-reactive attitude toward all sensory experiences.
View Article and Find Full Text PDFHere, we describe the characterization of a radioligand selective for GluN2B-containing NMDA receptors, 3-[H] 1-(azetidin-1-yl)-2-(6-(4-fluoro-3-methyl-phenyl)pyrrolo[3,2-b]pyridin-1-yl)ethanone ([H]-JNJ- GluN2B-5). In rat cortical membranes, the compound bound to a single site, and the following kinetic parameters were measured; association rate constant K = 0.0066 ± 0.
View Article and Find Full Text PDFNeuropsychiatric disorders such as major depressive disorders and schizophrenia are often associated with disruptions to the normal 24 h sleep wake cycle. Casein kinase 1 (CK1δ) is an integral part of the molecular machinery that regulates circadian rhythms. Starting from a cluster of bicyclic pyrazoles identified from a virtual screening effort, we utilized structure-based drug design to identify and reinforce a unique "hinge-flip" binding mode that provides a high degree of selectivity for CK1δ versus the kinome.
View Article and Find Full Text PDFHerein, we describe a series of substituted 1-((1,2,3-triazol-4-yl)methoxy)pyrimidines as potent GluN2B negative allosteric modulators. Exploration of several five- and six-membered heterocycles led to the identification of O-linked pyrimidine analogues that possessed a balance of potency and desirable ADME profiles. Due to initial observations of metabolic saturation, early metabolite identification studies were conducted on compound and the results drove further iterative optimization efforts to avoid the formation of undesired saturating metabolites.
View Article and Find Full Text PDFWe report here the synthesis and characterization of a dual 5-HT / 5-HT receptor antagonist 3-(4-Fluoro-phenyl)-2-isopropyl-2,4,5,6,7,8-hexahydro-1,2,6-triaza-azulene (4j). 4j is a high affinity 5-HT and 5-HT receptor ligand having a pK = 8.1 at both receptors.
View Article and Find Full Text PDFThe orexin system consists of two neuropeptides (orexin-A and orexin-B) that exert their mode of action on two receptors (orexin-1 and orexin-2). While the role of the orexin-2 receptor is established as an important modulator of sleep wake states, the role of the orexin-1 receptor is believed to play a role in addiction, panic, or anxiety. In this manuscript, we describe the optimization of a nonselective substituted azabicyclo[2.
View Article and Find Full Text PDFOrexin neurons originating in the perifornical and lateral hypothalamic area project to anxiety- and panic-associated neural circuitry, and are highly reactive to anxiogenic stimuli. Preclinical evidence suggests that the orexin system, and particularly the orexin-1 receptor (OX1R), may be involved in the pathophysiology of panic and anxiety. Selective OX1R antagonists thus may constitute a potential new treatment strategy for panic- and anxiety-related disorders.
View Article and Find Full Text PDFJ Med Chem
September 2020
Selective inhibitors of the GluN2B subunit of -methyl-d-aspartate receptors in the ionotropic glutamate receptor superfamily have been targeted for the treatment of mood disorders. We sought to identify structurally novel, brain penetrant, GluN2B-selective inhibitors suitable for evaluation in a clinical setting in patients with major depressive disorder. We identified a new class of negative allosteric modulators of GluN2B that contain a 1,3-dihydro-imidazo[4,5-]pyridin-2-one core.
View Article and Find Full Text PDFGPR139 is a G-protein coupled receptor expressed in circumventricular regions of the habenula and septum. Amino acids L-tryptophan and L-phenylalanine have been shown to activate GPR139 at physiologically relevant concentrations. The aim of the present study was to investigate the role of GPR139 on sleep modulation using pharmacological and genetic (GPR139 knockout mice, KO) rodent models.
View Article and Find Full Text PDFThe serine hydrolase monoacylglycerol lipase (MAGL) is the rate-limiting enzyme responsible for the degradation of the endocannabinoid 2-arachidonoylglycerol (2-AG) into arachidonic acid and glycerol. Inhibition of 2-AG degradation leads to elevation of 2-AG, the most abundant endogenous agonist of the cannabinoid receptors (CBs) CB1 and CB2. Activation of these receptors has demonstrated beneficial effects on mood, appetite, pain, and inflammation.
View Article and Find Full Text PDFTransient receptor potential melastatin type 2 (TRPM2) is a cation channel activated by free intracellular ADP-ribose and reactive oxygen species. TRPM2 signaling has been linked to the pathophysiology of CNS disorders such as neuropathic pain, bipolar disorder and Alzheimer's disease. In this manuscript, we describe the discovery of JNJ-28583113, a potent brain penetrant TRPM2 antagonist.
View Article and Find Full Text PDFRecently, our group along with another demonstrated that GPR139 can be activated by L-phenylalanine (L-Phe) and L-tryptophan (L-Trp) at physiologically relevant concentrations. GPR139 is discretely expressed in brain, with highest expression in medial habenula. Not only are the endogenous ligands catecholamine/serotonin precursors, but GPR139 expressing areas can directly/indirectly regulate the activity of catecholamine/serotonin neurons.
View Article and Find Full Text PDFThis report discloses the discovery and characterization of imidazo[1,2-]pyrazines and pyrazolo[1,5-]pyrimidines as selective negative modulators of α-amino-3-hydroxy-5-methylisoxazole-4-propionate receptors (AMPARs) associated with transmembrane AMPAR regulatory protein γ-8. Imidazopyrazine was initially identified as a promising γ-8 selective high-throughput screening hit, and subsequent structure-activity relationship optimization yielded subnanomolar, brain penetrant leads. Replacement of the imidazopyrazine core with an isosteric pyrazolopyrimidine scaffold improved microsomal stability and efflux liabilities to provide , JNJ-61432059.
View Article and Find Full Text PDFHerein, we disclose a series of selective GluN2B negative allosteric modulators containing a 1-pyrrolo[3,2-]pyridine core. Lead optimization efforts included increasing brain penetration as well as decreasing cytochrome P450 inhibition and hERG channel binding. The series was also optimized to reduce metabolic turnover in human and rat.
View Article and Find Full Text PDFAcetylcholine gates a large family of nicotinic receptor cation channels that control neuronal excitation and neurotransmitter release. These receptors are key targets for neuropsychiatric disorders; however, difficulties in expressing nicotinic acetylcholine (nACh) receptors hamper elaboration of their pharmacology and obscure elucidation of their biological functions. Particularly intriguing are α6-containing nACh receptors, which mediate nicotine-induced dopamine release in striatum-nucleus accumbens.
View Article and Find Full Text PDFGlutamate mediates fast excitatory neurotransmission via ionotropic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors. The trafficking and gating properties of AMPA receptors (AMPARs) can be amplified by transmembrane AMPAR regulatory proteins (TARPs), which are often expressed in localized brain regions. Herein, we describe the discovery, lead optimization, and preclinical characterization of 5-arylbenzimidazolone and oxindole-based negative modulators of AMPARs associated with TARP γ-8, the primary TARP found in hippocampus.
View Article and Find Full Text PDFEmerging data continues to point towards a relationship between neuroinflammation and neuropsychiatric disorders. ATP-induced activation of P2X7 results in IL-1β release causing neuroinflammation and microglial activation. This study describes the in-vitro and in-vivo neuropharmacology of a novel brain-penetrant P2X7 antagonist, JNJ-55308942, currently in clinical development.
View Article and Find Full Text PDFJ Med Chem
January 2018
A single pot dipolar cycloaddition reaction/Cope elimination sequence was developed to access novel 1,4,6,7-tetrahydro-5H-[1,2,3]triazolo[4,5-c]pyridine P2X7 antagonists that contain a synthetically challenging chiral center. The structure-activity relationships of the new compounds are described. Two of these compounds, (S)-(2-fluoro-3-(trifluoromethyl)phenyl)(1-(5-fluoropyrimidin-2-yl)-6-methyl-1,4,6,7-tetrahydro-5H-[1,2,3]triazolo[4,5-c]pyridin-5-yl)methanone (compound 29) and (S)-(3-fluoro-2-(trifluoromethyl)pyridin-4-yl)(1-(5-fluoropyrimidin-2-yl)-6-methyl-1,4,6,7-tetrahydro-5H-[1,2,3]triazolo[4,5-c]pyridin-5-yl)methanone (compound 35), were found to have robust P2X7 receptor occupancy at low doses in rat with ED values of 0.
View Article and Find Full Text PDFOrexin neurons originating in the perifornical and lateral hypothalamic area are highly reactive to anxiogenic stimuli and have strong projections to anxiety and panic-associated circuitry. Recent studies support a role for the orexin system and in particular the orexin 1 receptor (OX1R) in coordinating an integrative stress response. However, no selective OX1R antagonist has been systematically tested in two preclinical models of using panicogenic stimuli that induce panic attack in the majority of people with panic disorder, namely an acute hypercapnia-panic provocation model and a model involving chronic inhibition of GABA synthesis in the perifornical hypothalamic area followed by intravenous sodium lactate infusion.
View Article and Find Full Text PDFThe synthesis and preclinical characterization of novel 4-(R)-methyl-6,7-dihydro-4H-triazolo[4,5-c]pyridines that are potent and selective brain penetrant P2X7 antagonists are described. Optimization efforts based on previously disclosed unsubstituted 6,7-dihydro-4H-triazolo[4,5-c]pyridines, methyl substituted 5,6,7,8-tetrahydro[1,2,4]triazolo[4,3-a]pyrazines, and several other series lead to the identification of a series of 4-(R)-methyl-6,7-dihydro-4H-triazolo[4,5-c]pyridines that are selective P2X7 antagonists with potency at the rodent and human P2X7 ion channels. These novel P2X7 antagonists have suitable physicochemical properties, and several analogs have an excellent pharmacokinetic profile, good partitioning into the CNS and show robust in vivo target engagement after oral dosing.
View Article and Find Full Text PDFNeuronal nicotinic acetylcholine receptors (nAChRs) participate in diverse aspects of brain function and mediate behavioral and addictive properties of nicotine. Neuronal nAChRs derive from combinations of α and β subunits, whose assembly is tightly regulated. NACHO was recently identified as a chaperone for α7-type nAChRs.
View Article and Find Full Text PDFThe synthesis and SAR of a series of 4,5,6,7-tetrahydro-imidazo[4,5-c]pyridine P2X7 antagonists are described. Addressing P2X7 affinity and liver microsomal stability issues encountered with this template afforded methyl substituted 4,5,6,7-tetrahydro-imidazo[4,5-c]pyridines ultimately leading to the identification of 1 (JNJ 54166060). 1 is a potent P2X7 antagonist with an ED50 = 2.
View Article and Find Full Text PDFThe ATP-gated P2X7 receptor (P2X7R) is a non-selective cation channel which senses high extracellular ATP concentrations and has been suggested as a target for the treatment of neuroinflammation and neurodegenerative diseases. The use of P2X7R antagonists may therefore be a viable approach for treating CNS pathologies, including epileptic disorders. Recent studies showed anticonvulsant potential of P2X7R antagonists in certain animal models.
View Article and Find Full Text PDF