Publications by authors named "Brian Liddicoat"

Unlabelled: Therapies that enhance antitumor immunity have altered the natural history of many cancers. Consequently, leveraging nonoverlapping mechanisms to increase immunogenicity of cancer cells remains a priority. Using a novel enzymatic inhibitor of the RNA methyl-transferase METTL3, we demonstrate a global decrease in N6-methyladenosine (m6A) results in double-stranded RNA (dsRNA) formation and a profound cell-intrinsic interferon response.

View Article and Find Full Text PDF

Unlabelled: Cancer cell metabolism is increasingly recognized as providing an exciting therapeutic opportunity. However, a drug that directly couples targeting of a metabolic dependency with the induction of cell death in cancer cells has largely remained elusive. Here we report that the drug-like small-molecule ironomycin reduces the mitochondrial iron load, resulting in the potent disruption of mitochondrial metabolism.

View Article and Find Full Text PDF

Whilst DNA cytosine methylation is the oldest and most well-studied epigenetic modification, basking in its glory days, it may be soon overshadowed by the new kid on the block: RNA adenosine methylation. This juxtaposition is indeed superficial, and a deep exploration toward the fundamental requirements for these essential epigenetic marks provides a clear perspective on their converging and synergistic roles. The recent discovery that both of these modifications are essential for preventing inappropriate activation of the intracellular innate immune responses to endogenous transcripts has provided a lot of interest in targeting them therapeutically as a means to improve cancer immunogenicity.

View Article and Find Full Text PDF

Combination therapy remains the cornerstone for cancer management, and understanding how to rationally partner drugs is imperative. In this issue of Molecular Cell, Shu et al. (2020) provide a tour de force multi-omic approach to identify synergistic pathways that increase the efficacy of BET bromodomain inhibitors in triple-negative breast cancer.

View Article and Find Full Text PDF

Pharmacologic agents that modulate ubiquitin ligase activity to induce protein degradation are a major new class of therapeutic agents, active in a number of hematologic malignancies. However, we currently have a limited understanding of the determinants of activity of these agents and how resistance develops. We developed and used a novel quantitative, targeted mass spectrometry (MS) assay to determine the relative activities, kinetics, and cell-type specificity of thalidomide and 4 analogs, all but 1 of which are in clinical use or clinical trials for hematologic malignancies.

View Article and Find Full Text PDF

The small molecules thalidomide, lenalidomide, and pomalidomide induce the ubiquitination and proteasomal degradation of the transcription factors Ikaros (IKZF1) and Aiolos (IKZF3) by recruiting a Cys-His (C2H2) zinc finger domain to Cereblon (CRBN), the substrate receptor of the CRL4 E3 ubiquitin ligase. We screened the human C2H2 zinc finger proteome for degradation in the presence of thalidomide analogs, identifying 11 zinc finger degrons. Structural and functional characterization of the C2H2 zinc finger degrons demonstrates how diverse zinc finger domains bind the permissive drug-CRBN interface.

View Article and Find Full Text PDF

Thalidomide and its derivatives, lenalidomide and pomalidomide, are clinically effective treatments for multiple myeloma and myelodysplastic syndrome with del(5q). These molecules lack activity in murine models, limiting investigation of their therapeutic activity or toxicity in vivo. Here, we report the development of a mouse model that is sensitive to thalidomide derivatives because of a single amino acid change in the direct target of thalidomide derivatives, cereblon (Crbn).

View Article and Find Full Text PDF

TNF is a pro-inflammatory cytokine produced by both lymphoid and non-lymphoid cells. As a consequence of the widespread expression of its receptors (TNFR1 and 2), TNF plays a role in many important biological processes. In the context of influenza A virus (IAV) infection, TNF has variably been implicated in mediating immunopathology as well as suppression of the immune response.

View Article and Find Full Text PDF

Background: Adenosine-to-inosine (A-to-I) editing of dsRNA by ADAR proteins is a pervasive epitranscriptome feature. Tens of thousands of A-to-I editing events are defined in the mouse, yet the functional impact of most is unknown. Editing causing protein recoding is the essential function of ADAR2, but an essential role for recoding by ADAR1 has not been demonstrated.

View Article and Find Full Text PDF
Article Synopsis
  • - ADARs, specifically ADAR1, convert adenosine to inosine in double-stranded RNA and are crucial for maintaining hematopoietic stem cells; however, their role in other blood cell types needs more exploration.
  • - Research shows that ADAR1 is not necessary for myelopoiesis but is critical for erythropoiesis, with its absence leading to immune signaling activation and increased cell death in red blood cells.
  • - The study confirms that RNA editing by ADAR1 is vital for normal erythropoiesis, highlighting specific editing events in erythroid transcripts that are unique to ADAR1 activity.
View Article and Find Full Text PDF

The conversion of genomically encoded adenosine to inosine in dsRNA is termed as A-to-I RNA editing. This process is catalyzed by two of the three mammalian ADAR proteins (ADAR1 and ADAR2) both of which have essential functions for normal organismal homeostasis. The phenotype of ADAR2 deficiency can be primarily ascribed to a lack of site-selective editing of a single transcript in the brain.

View Article and Find Full Text PDF

The proto-oncogene SKI is highly expressed in human myeloid leukemia and also in murine hematopoietic stem cells. However, its operative relevance in these cells remains elusive. We have over-expressed SKI to define its intrinsic role in hematopoiesis and myeloid neoplasms, which resulted in a robust competitive advantage upon transplantation, a complete dominance of the stem and progenitor compartments, and a marked enhancement of myeloid differentiation at the expense of other lineages.

View Article and Find Full Text PDF

Adenosine-to-inosine (A-to-I) editing is a highly prevalent posttranscriptional modification of RNA, mediated by ADAR (adenosine deaminase acting on RNA) enzymes. In addition to RNA editing, additional functions have been proposed for ADAR1. To determine the specific role of RNA editing by ADAR1, we generated mice with an editing-deficient knock-in mutation (Adar1(E861A), where E861A denotes Glu(861)→Ala(861)).

View Article and Find Full Text PDF

The proto-oncogene SKI is highly expressed in human myeloid leukemia and also in murine hematopoietic stem cells. However, its operative relevance in these cells remains elusive. We have over-expressed SKI to define its intrinsic role in hematopoiesis and myeloid neoplasms, which resulted in a robust competitive advantage upon transplantation, a complete dominance of the stem and progenitor compartments, and a marked enhancement of myeloid differentiation at the expense of other lineages.

View Article and Find Full Text PDF

RNA editing by deamination of adenosine to inosine (A-to-I editing) is a physiologically important posttranscriptional mechanism that can regulate expression of genes by modifying their transcripts. A-to-I editing is mediated by adenosine deaminases acting on RNA (ADAR) that can catalytically exchange adenosines to inosines, with varying efficiency, depending on the structure of the RNA substrates. Significant progress in understanding the biological function of mammalian ADARs has been made in the past decade by the creation and analysis of gene-targeted mice with disrupted or modified ADAR alleles.

View Article and Find Full Text PDF

Erythropoietin (Epo) has been used in the treatment of anemia resulting from numerous etiologies, including renal disease and cancer. However, its effects are controversial and the expression pattern of the Epo receptor (Epo-R) is debated. Using in vivo lineage tracing, we document that within the hematopoietic and mesenchymal lineage, expression of Epo-R is essentially restricted to erythroid lineage cells.

View Article and Find Full Text PDF