The condensation of 1,3-diketones with hydrazine to access 4-pyrazoles is a well-established synthetic route that travels through a 4-pyrazol-1-ium intermediate. In the route to a 3,5-diphenyl-4-pyrazole containing a cyclobutane spirocycle, density functional theory calculations predict and experiments show that the protonated intermediate undergoes a rapid 1,5-sigmatropic shift to form a tetrahydrocyclopenta[]pyrazole. Replacing the 3,5-diphenyl groups with 2-furanyl groups decreases the calculated rate of the 1,5-sigmatropic shift by 6.
View Article and Find Full Text PDF"Click organocatalysis" uses mutually orthogonal click reactions to organocatalyze a click reaction. We report the development of an isobenzofuran organocatalyst that increases the rate and regioselectivity of an azide-alkyne cycloaddition. The organocatalytic cycle consists of (1) a Diels-Alder reaction of an alkyne with a diarylisobenzofuran to form a benzooxanorbornadiene, (2) a 1,3-dipolar cycloaddition with an azide to form a 4,5-dihydro-1,2,3-triazole, and (3) a retro-Diels-Alder reaction that releases the triazole product and regenerates the diarylisobenzofuran organocatalyst.
View Article and Find Full Text PDFWe combine the effects of spirocyclization and hyperconjugation to increase the Diels-Alder reactivity of the 4-pyrazole scaffold. A density functional theory (DFT) investigation predicts that 4-pyrazoles containing an oxetane functionality at the saturated center are extremely reactive despite having a relatively high-lying lowest unoccupied molecular orbital (LUMO) energy.
View Article and Find Full Text PDF4-Pyrazoles are emerging as useful click reagents. Fluorinating the saturated center enables 4-pyrazoles to react rapidly as Diels-Alder dienes without a catalyst but compromises the stability of these dienes under physiological conditions. To identify more stable 4-pyrazoles for bioorthogonal chemistry applications, we investigated the Diels-Alder reactivity and biological stability of three 4-oxo-substituted 4-pyrazoles.
View Article and Find Full Text PDFThe Diels-Alder reactivity of 5-membered dienes is tunable through spirocyclization at the saturated center. As the size of the spirocycle decreases, the Diels-Alder reactivity increases with the cyclobutane spirocycle, spiro[3.4]octa-5,7-diene, being the most reactive.
View Article and Find Full Text PDFWe have experimentally and computationally explored the sluggish Diels-Alder reactivities of the geminally substituted 5,5-dimethylcyclopentadiene and 5,5-dimethyl-2,3-diazacyclopentadiene (4,4-dimethyl-4-pyrazole) scaffolds. We found that geminal dimethylation of 1,2,3,4-tetramethylcyclopentadiene to 1,2,3,4,5,5-hexamethylcyclopentadiene decreases the Diels-Alder reactivity towards maleimide by 954-fold. Quantum mechanical calculations revealed that the decreased Diels-Alder reactivities of -dimethyl substituted cyclopentadienes and 2,3-diazacyclopentadienes are not a consequence of unfavorable steric interactions between the diene and dienophile as reported previously, but a consequence of the increased repulsion within the -dimethyl group in the transition state.
View Article and Find Full Text PDFCyclopentadiene is one of the most reactive dienes in normal electron-demand Diels-Alder reactions. The high reactivities and yields of cyclopentadiene cycloadditions make them ideal as click reactions. In this review, we discuss the history of the cyclopentadiene cycloaddition as well as applications of cyclopentadiene click reactions.
View Article and Find Full Text PDFInvited for the cover of this issue is the group of Ronald T. Raines at the Massachusetts Institute of Technology. The image depicts the consequence of replacing carbon with nitrogen in aromatic systems, represented by Kekulé's allegorical snake.
View Article and Find Full Text PDF4-Pyrazoles are emerging scaffolds for "click" chemistry. Late-stage fluorination with Selectfluor is found to provide a reliable route to 4-fluoro-4-methyl-4-pyrazoles. 4-Fluoro-4-methyl-3,5-diphenyl-4-pyrazole (MFP) manifested 7-fold lower Diels-Alder reactivity than did 4,4-difluoro-3,5-diphenyl-4-pyrazole (DFP), but higher stability in the presence of biological nucleophiles.
View Article and Find Full Text PDFThe replacement of carbon with nitrogen can affect the aromaticity of organic rings. Nucleus-independent chemical shift (NICS) calculations at the center of the aromatic π-systems reveal that incorporating nitrogen into 5-membered heteroaromatic dienes has only a small influence on aromaticity. In contrast, each nitrogen incorporated into benzene results in a sequential and substantial loss of aromaticity.
View Article and Find Full Text PDFThe Diels-Alder reactivity of 4,4-difluoro-3,5-diphenyl-4-pyrazole was investigated experimentally and computationally with -bicyclo[6.1.0]non-4-yne.
View Article and Find Full Text PDFThe isocyano group is a structurally compact bioorthogonal functional group that reacts with tetrazines under physiological conditions. Now it is shown that bulky tetrazine substituents accelerate this cycloaddition. Computational studies suggest that dispersion forces between the isocyano group and the tetrazine substituents in the transition state contribute to the atypical structure-activity relationship.
View Article and Find Full Text PDFLindner and Lemal showed that perfluorination of keto-enol systems significantly shifts the equilibrium toward the enol tautomer. Quantum mechanical calculations now reveal that the shift in equilibrium is the result of the stabilization of the enol tautomer by hyperconjugative π → σ* interactions and the destabilization of the keto tautomer by the electron withdrawal induced by the neighboring fluorine atoms. The preference for the enol tautomer further increases in smaller perfluorinated cyclic keto-enol systems.
View Article and Find Full Text PDFThe reactivities of 2-butyne, cycloheptyne, cyclooctyne, and cyclononyne in the 1,3-dipolar cycloaddition reaction with methyl azide were evaluated through DFT calculations at the M06-2X/6-311++G(d)//M06-2X/6-31+G(d) level of theory. Computed activation free energies for the cycloadditions of cycloalkynes are 16.5-22.
View Article and Find Full Text PDFWe have investigated the inverse electron-demand Diels-Alder reactions of trans-cyclooctene (TCO) and endo-bicyclo[6.1.0]nonyne (BCN) with a 1,2,4,5-tetrazine, a cyclopentadienone, and an ortho-benzoquinone.
View Article and Find Full Text PDFQuantum chemical calculations were used to investigate the Diels-Alder reactivities for a series of cycloalkenediones with tetrazine. We find that the reactivity trend of cycloalkenediones toward tetrazine is opposite to cycloalkenes. The electrostatic interactions between the cycloalkenediones and tetrazine become more stabilizing as the ring size of the cycloalkenediones increases, resulting in lower activation energies.
View Article and Find Full Text PDFThe reactivities and π-facial stereoselectivities of Diels-Alder reactions of 5-substituted cyclopentadienes were studied using density functional theory. Burnell and co-workers previously showed that the π-facial selectivities result from the energies required to distort the reactants into the transition state geometries. We have discovered the origins of these distortions.
View Article and Find Full Text PDFThe remarkably high stereoselectivity of a Diels-Alder cycloaddition designed by Stork for the synthesis of germine has been examined with theory. We conceived a collaboration with Gilbert Stork, the great synthetic chemist and collaborator. We wished to complement Stork's insights with computations to explain the extraordinary selectivity he designed to introduce four new stereocenters in one step.
View Article and Find Full Text PDFA new class of bioorthogonal reagents based on the cyclopentadiene scaffold is described. The diene 6,7,8,9-tetrachloro-1,4-dioxospiro[4,4]nona-6,8-diene (a tetrachlorocyclopentadiene ketal, TCK) is ambiphilic and self-orthogonal with remarkable stability. The diene reacts rapidly with a trans-cyclooctene and an endo-bicyclononyne, but slowly with dibenzoazacyclooctyne (DIBAC), allowing for tandem labeling studies with mutually orthogonal azides that react rapidly with DIBAC.
View Article and Find Full Text PDFThe endo and exo stereoselectivities of Diels-Alder reactions of cyclopropenone, iminocyclopropene, and substituted triafulvenes with butadiene were rationalized using density functional theory calculations. When cyclopropenone is the dienophile, there is a 1.8 kcal/mol preference for the exo cycloaddition with butadiene, while the reaction of 3-difluoromethylene triafulvene with butadiene favors the endo cycloaddition by 2.
View Article and Find Full Text PDFWe report a DFT computational study (M06-2X) of π-facial selectivity in the Diels-Alder reactions of thiophene 1-oxide. The preference for the syn cycloaddition arises because the ground state geometry of thiophene 1-oxide is predistorted into an envelope conformation that resembles the syn transition state geometry. The syn distortion occurs to minimize the effect of hyperconjugative antiaromaticity in the thiophene 1-oxide, arising from overlap of the σ* with the π-system.
View Article and Find Full Text PDFA four-step synthesis of substituted 5,11-dicyano-6,12-diaryltetracenes was developed, starting from readily available para-substituted benzophenones. The key step of this straightforward route is the complex cascade reaction between tetraaryl[3]cumulenes and tetracyanoethene (TCNE) resulting in 5,5,11,11-tetracyano-5,11-dihydrotetracenes. The mechanism of this transformation was reinvestigated by means of theoretical calculations.
View Article and Find Full Text PDFThe Diels-Alder reactivities of a series of cycloalkenes, from the highly strained cyclopropene to the unstrained cyclohexene, have been studied with density functional theory using the M06-2X functional. The normal electron-demand Diels-Alder reactions with cyclopentadiene and the inverse electron-demand Diels-Alder reactions with 3,6-bis(trifluoromethyl)tetrazine were analyzed using the distortion/interaction-activation strain model. Previous studies showed that activation strain computed from the distorted reactants in the transition structures are larger for unstrained than strained cycloalkenes, and that most of the activation energy differences are accounted for by this difference.
View Article and Find Full Text PDFThe factors controlling the reactivities and stereoselectivities in the Diels-Alder reactions of substituted cyclopropenes with butadiene were explored with M06-2X density functional theory. Differences in reactivities result from differences in the hyperconjugative aromaticities and antiaromaticities of the cyclopropenes. When the 3-substituent is a σ-donor, the ground state is destabilized, and the reactivity is enhanced.
View Article and Find Full Text PDF