Background: Glioblastoma (GBM) has a median survival of <2 years. Pexidartinib (PLX3397) is a small-molecule inhibitor of CSF1R, KIT, and oncogenic FTL3, which are implicated in GBM treatment resistance. Results from glioma models indicate that combining radiation therapy (RT) and pexidartinib reduces radiation resistance.
View Article and Find Full Text PDFKynurenine 3-monooxygenase (KMO), a key player in the kynurenine pathway (KP) of tryptophan degradation, regulates the synthesis of the neuroactive metabolites 3-hydroxykynurenine (3-HK) and kynurenic acid (KYNA). KMO activity has been implicated in several major brain diseases including Huntington's disease (HD) and schizophrenia. In the brain, KMO is widely believed to be predominantly localized in microglial cells, but verification in vivo has not been provided so far.
View Article and Find Full Text PDFMicroglia, the main immunocompetent cells of the brain, regulate neuronal function, but their contribution to cerebral blood flow (CBF) regulation has remained elusive. Here, we identify microglia as important modulators of CBF both under physiological conditions and during hypoperfusion. Microglia establish direct, dynamic purinergic contacts with cells in the neurovascular unit that shape CBF in both mice and humans.
View Article and Find Full Text PDFPurpose: To assess the response to pexidartinib treatment in six cohorts of adult patients with advanced, incurable solid tumors associated with colony-stimulating factor 1 receptor (CSF1R) and/or KIT proto-oncogene receptor tyrosine kinase activity.
Patients And Methods: From this two-part phase I, multicenter study, pexidartinib, a small-molecule tyrosine kinase inhibitor that targets CSF1R, KIT, and FMS-like tyrosine kinase 3 (FLT3), was evaluated in six adult patient cohorts (part 2, extension) with advanced solid tumors associated with dysregulated CSF1R. Adverse events, pharmacokinetics, and tumor responses were assessed for all patients; patients with tenosynovial giant cell tumor (TGCT) were also evaluated for tumor volume score (TVS) and patient-reported outcomes (PRO).
Microgliosis is a prominent pathological feature in many neurological diseases including multiple sclerosis (MS), a progressive auto-immune demyelinating disorder. The precise role of microglia, parenchymal central nervous system (CNS) macrophages, during demyelination, and the relative contributions of peripheral macrophages are incompletely understood. Classical markers used to identify microglia do not reliably discriminate between microglia and peripheral macrophages, confounding analyses.
View Article and Find Full Text PDFJ Neuroinflammation
October 2020
Background: The neuronal ceroid lipofuscinoses (CLN diseases) are fatal lysosomal storage diseases causing neurodegeneration in the CNS. We have previously shown that neuroinflammation comprising innate and adaptive immune reactions drives axonal damage and neuron loss in the CNS of palmitoyl protein thioesterase 1-deficient (Ppt1) mice, a model of the infantile form of the diseases (CLN1). Therefore, we here explore whether pharmacological targeting of innate immune cells modifies disease outcome in CLN1 mice.
View Article and Find Full Text PDFBackground: Cosmic radiation exposures have been found to elicit cognitive impairments involving a wide-range of underlying neuropathology including elevated oxidative stress, neural stem cell loss, and compromised neuronal architecture. Cognitive impairments have also been associated with sustained microglia activation following low dose exposure to helium ions. Space-relevant charged particles elicit neuroinflammation that persists long-term post-irradiation.
View Article and Find Full Text PDFFMS-like tyrosine kinase 3 (FLT3) tyrosine kinase inhibitors (TKIs) have activity in acute myeloid leukemia (AML) patients with FLT3 internal tandem duplication (ITD) mutations, but efficacy is limited by resistance-conferring kinase domain mutations. This phase 1/2 study evaluated the safety, tolerability, and efficacy of the oral FLT3 inhibitor PLX3397 (pexidartinib), which has activity against the FLT3 TKI-resistant F691L gatekeeper mutation in relapsed/refractory FLT3-ITD-mutant AML. Ninety patients were treated: 34 in dose escalation (part 1) and 56 in dose expansion (part 2).
View Article and Find Full Text PDFActa Neuropathol Commun
November 2019
Numerous clinical studies have established the debilitating neurocognitive side effects of chemotherapy in the treatment of breast cancer, often referred as chemobrain. We hypothesize that cognitive impairments are associated with elevated microglial inflammation in the brain. Thus, either elimination of microglia or restoration of microglial function could ameliorate cognitive dysfunction.
View Article and Find Full Text PDFMany risk genes for the development of Alzheimer's disease (AD) are exclusively or highly expressed in myeloid cells. Microglia are dependent on colony-stimulating factor 1 receptor (CSF1R) signaling for their survival. We designed and synthesized a highly selective brain-penetrant CSF1R inhibitor (PLX5622) allowing for extended and specific microglial elimination, preceding and during pathology development.
View Article and Find Full Text PDFPurpose: To evaluate the safety, recommended phase II dose (RP2D) and efficacy of pexidartinib, a colony stimulating factor receptor 1 (CSF-1R) inhibitor, in combination with weekly paclitaxel in patients with advanced solid tumors.
Patients And Methods: In part 1 of this phase Ib study, 24 patients with advanced solid tumors received escalating doses of pexidartinib with weekly paclitaxel (80 mg/m). Pexidartinib was administered at 600 mg/day in cohort 1.
Genetically caused neurological disorders of the central nervous system (CNS) usually result in poor or even fatal clinical outcome and few or no causative treatments are available. Often, these disorders are associated with disease-amplifying neuroinflammation, a feature shared by progressive forms of multiple sclerosis (PMS), another poorly treatable disorder of the CNS. We have previously generated two mouse lines carrying distinct mutations in the oligodendrocytic PLP1 gene that have initially been identified in patients fulfilling clinical criteria for multiple sclerosis (MS).
View Article and Find Full Text PDFEndocr Relat Cancer
January 2019
For men with castration-resistant prostate cancer (CRPC), androgen-deprivation therapy (ADT) often becomes ineffective requiring the addition of docetaxel, a proven effective chemotherapy option. Tumor-associated macrophages (TAMs) are known to provide protumorigenic influences that contribute to treatment failure. In this study, we examined the contribution of TAMs to docetaxel treatment.
View Article and Find Full Text PDFMicroglia are the resident immune cell of the central nervous system (CNS), and serve to protect and maintain the local brain environment. Microglia are critically dependent on signaling through the colony-stimulating factor 1 receptor (CSF1R); administration of CSF1R inhibitors that cross the blood brain barrier (BBB) lead to the elimination of up to 99% of microglia, depending on CNS exposure and treatment duration. Once microglia are depleted, withdrawal of inhibitor stimulates repopulation of the entire CNS with new cells, conceivably enabling a therapeutic strategy for beneficial renewal of the entire microglial tissue.
View Article and Find Full Text PDFMicroglia, the resident immune cell of the brain, can be eliminated via pharmacological inhibition of the colony-stimulating factor 1 receptor (CSF1R). Withdrawal of CSF1R inhibition then stimulates microglial repopulation, effectively replacing the microglial compartment. In the aged brain, microglia take on a "primed" phenotype and studies indicate that this coincides with age-related cognitive decline.
View Article and Find Full Text PDFResistance to current therapies still impacts a significant number of melanoma patients and can be regulated by epigenetic alterations. Analysis of global cytosine methylation in a cohort of primary melanomas revealed a pattern of early demethylation associated with overexpression of oncogenic transcripts. Loss of methylation and associated overexpression of the CSF 1 receptor (CSF1R) was seen in a majority of tumors and was driven by an alternative, endogenous viral promoter in a subset of samples.
View Article and Find Full Text PDFNeurotropic herpesviruses can establish lifelong infection in humans and contribute to severe diseases including encephalitis and neurodegeneration. However, the mechanisms through which the brain's immune system recognizes and controls viral infections propagating across synaptically linked neuronal circuits have remained unclear. Using a well-established model of alphaherpesvirus infection that reaches the brain exclusively via retrograde transsynaptic spread from the periphery, and in vivo two-photon imaging combined with high resolution microscopy, we show that microglia are recruited to and isolate infected neurons within hours.
View Article and Find Full Text PDFMultiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system (CNS) characterized by progressive neuronal demyelination and degeneration. Much of this damage can be attributed to microglia, the resident innate immune cells of the CNS, as well as monocyte-derived macrophages, which breach the blood-brain barrier in this inflammatory state. Upon activation, both microglia and macrophages release a variety of factors that greatly contribute to disease progression, and thus therapeutic approaches in MS focus on diminishing their activity.
View Article and Find Full Text PDFAging is known as a major risk factor for the structure and function of the nervous system. There is urgent need to overcome such deleterious effects of age-related neurodegeneration. Here we show that peripheral nerves of 24-month-old aging C57BL/6 mice of either sex show similar pathological alterations as nerves from aging human individuals, whereas 12-month-old adult mice lack such alterations.
View Article and Find Full Text PDFThe underlying cellular mechanisms of catatonia, an executive "psychomotor" syndrome that is observed across neuropsychiatric diseases, have remained obscure. In humans and mice, reduced expression of the structural myelin protein CNP is associated with catatonic signs in an age-dependent manner, pointing to the involvement of myelin-producing oligodendrocytes. Here, we showed that the underlying cause of catatonic signs is the low-grade inflammation of white matter tracts, which marks a final common pathway in Cnp-deficient and other mutant mice with minor myelin abnormalities.
View Article and Find Full Text PDFBackground: The 18-kDa translocator protein (TSPO) is an important target for assessing neuroimmune function in brain with positron-emission tomography (PET) imaging. The goal of this work was to assess two [C]PBR28 imaging paradigms for measuring dynamic microglia changes in Macaca mulatta.
Methods: Dynamic [C]PBR28 PET imaging data with arterial blood sampling were acquired to quantify TSPO levels as [C]PBR28 V .
Microglia mediate chronic neuroinflammation following central nervous system (CNS) disease or injury, and in doing so, damage the local brain environment by impairing recovery and contributing to disease processes. Microglia are critically dependent on signaling through the colony-stimulating factor 1 receptor (CSF1R) and can be eliminated via administration of CSF1R inhibitors. Resolving chronic neuroinflammation represents a universal goal for CNS disorders, but long-term microglial elimination may not be amenable to clinical use.
View Article and Find Full Text PDFBackground: Primary central nervous system (CNS) neoplasms and brain metastases are routinely treated with whole-brain radiation. Long-term survival occurs in many patients, but their quality of life is severely affected by the development of cognitive deficits, and there is no treatment to prevent these adverse effects. Neuroinflammation, associated with activation of brain-resident microglia and infiltrating monocytes, plays a pivotal role in loss of neurological function and has been shown to be associated with acute and long-term effects of brain irradiation.
View Article and Find Full Text PDFCranial irradiation for the treatment of brain cancer elicits progressive and severe cognitive dysfunction that is associated with significant neuropathology. Radiation injury in the CNS has been linked to persistent microglial activation, and we find upregulation of pro-inflammatory genes even 6 weeks after irradiation. We hypothesize that depletion of microglia in the irradiated brain would have a neuroprotective effect.
View Article and Find Full Text PDFMicroglia are the main immune cells of the brain and contribute to common brain diseases. However, it is unclear how microglia influence neuronal activity and survival in the injured brain in vivo. Here we develop a precisely controlled model of brain injury induced by cerebral ischaemia combined with fast in vivo two-photon calcium imaging and selective microglial manipulation.
View Article and Find Full Text PDF