The coronavirus papain-like protease (PLpro) is crucial for viral replicase polyprotein processing. Additionally, PLpro can subvert host defense mechanisms by its deubiquitinating (DUB) and deISGylating activities. To elucidate the role of these activities during SARS-CoV-2 infection, we introduced mutations that disrupt binding of PLpro to ubiquitin or ISG15.
View Article and Find Full Text PDFDeubiquitination of cellular substrates by viral proteases is a mechanism used to interfere with host cellular signaling processes, shared between members of the coronavirus- and arterivirus families. In the case of Arteriviruses, deubiquitinating and polyprotein processing activities are accomplished by the virus-encoded papain-like protease 2 (PLP2). Several studies have implicated the deubiquitinating activity of the porcine reproductive and respiratory syndrome virus (PRRSV) PLP2 in the downregulation of cellular interferon production, however to date, the only arterivirus PLP2 structure described is that of equine arteritis virus (EAV), a distantly related virus.
View Article and Find Full Text PDFSeveral Pseudomonas aeruginosa AmpC mutants have emerged that exhibit enhanced activity against ceftazidime and ceftolozane, while also evading inhibition by avibactam. Interestingly, P. aeruginosa strains harboring these AmpC mutations fortuitously exhibit enhanced carbapenem susceptibility.
View Article and Find Full Text PDFThe severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has made it clear that combating coronavirus outbreaks benefits from a combination of vaccines and therapeutics. A promising drug target common to all coronaviruses-including SARS-CoV, MERS-CoV, and SARS-CoV-2-is the papain-like protease (PLpro). PLpro cleaves part of the viral replicase polyproteins into non-structural protein subunits, which are essential to the viral replication cycle.
View Article and Find Full Text PDFTay-Sachs and Sandhoff diseases are genetic disorders resulting from mutations in or , which code for the α- and β-subunits of the heterodimer β-hexosaminidase A (HexA), respectively. Loss of HexA activity results in the accumulation of GM2 ganglioside (GM2) in neuronal lysosomes, culminating in neurodegeneration and death, often by age 4. Previously, we combined critical features of the α- and β-subunits of HexA into a single subunit to create a homodimeric enzyme known as HexM.
View Article and Find Full Text PDFMarafiviruses are capable of persistent infection in a range of plants that have importance to the agriculture and biofuel industries. Although the genomes of a few of these viruses have been studied in-depth, the composition and processing of the polyproteins produced from their main ORFs have not. The Marafivirus polyprotein consists of essential proteins that form the viral replicase, as well as structural proteins for virus assembly.
View Article and Find Full Text PDFActa Crystallogr D Struct Biol
March 2021
Sinorhizobium meliloti 1021 is a Gram-negative alphaproteobacterium with a robust capacity for carbohydrate metabolism. The enzymes that facilitate these reactions assist in the survival of the bacterium across a range of environmental niches, and they may also be suitable for use in industrial processes. SmoS is a dehydrogenase that catalyzes the oxidation of the commonly occurring sugar alcohols sorbitol and galactitol to fructose and tagatose, respectively, using NAD as a cofactor.
View Article and Find Full Text PDFNumerous studies continue to be published on the COVID-19 pandemic that is being caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Given the rapidly evolving global response to SARS-CoV-2, here we primarily review the leading COVID-19 vaccine strategies that are currently in Phase III clinical trials. Nonreplicating viral vector strategies, inactivated virus, recombinant protein subunit vaccines, and nucleic acid vaccine platforms are all being pursued in an effort to combat the infection.
View Article and Find Full Text PDFProgrammed ribosomal frameshifting (PRF) is a mechanism used by arteriviruses like porcine reproductive and respiratory syndrome virus (PRRSV) to generate multiple proteins from overlapping reading frames within its RNA genome. PRRSV employs -1 PRF directed by RNA secondary and tertiary structures within its viral genome (canonical PRF), as well as a noncanonical -1 and -2 PRF that are stimulated by the interactions of PRRSV nonstructural protein 1β (nsp1β) and host protein poly(C)-binding protein (PCBP) 1 or 2 with the viral genome. Together, nsp1β and one of the PCBPs act as transactivators that bind a C-rich motif near the shift site to stimulate -1 and -2 PRF, thereby enabling the ribosome to generate two frameshift products that are implicated in viral immune evasion.
View Article and Find Full Text PDFis a leading cause of nosocomial infections worldwide and notorious for its broad-spectrum resistance to antibiotics. A key mechanism that provides extensive resistance to β-lactam antibiotics is the inducible expression of AmpC β-lactamase. Recently, a number of clinical isolates expressing mutated forms of AmpC have been found to be clinically resistant to the antipseudomonal β-lactam-β-lactamase inhibitor (BLI) combinations ceftolozane-tazobactam and ceftazidime-avibactam.
View Article and Find Full Text PDFBackground: The Crimean-Congo hemorrhagic fever virus (CCHFV) is a segmented negative-sense RNA virus that can cause severe human disease. The World Health Organization (WHO) has listed CCHFVas a priority pathogen with an urgent need for enhanced research activities to develop effective countermeasures. Here we adopted a biochemical approach that targets the viral RNA-dependent RNA polymerase (RdRp).
View Article and Find Full Text PDFIn 2016, we identified a new class A carbapenemase, VCC-1, in a nontoxigenic strain that had been isolated from retail shrimp imported into Canada for human consumption. Shortly thereafter, seven additional VCC-1-producing isolates were recovered along the German coastline. These isolates appear to have acquired the VCC-1 gene () independently from the Canadian isolate, suggesting that is mobile and widely distributed.
View Article and Find Full Text PDFThe development of a potent mechanism-based inactivator of NagZ, an enzyme critical to the production of inducible AmpC β-lactamase in Gram-negative bacteria, is presented. This inactivator significantly reduces MIC values for important β-lactams against a clinically relevant strain of Pseudomonas aeruginosa.
View Article and Find Full Text PDFPost-translational modification of cellular proteins by ubiquitin regulates numerous cellular processes, including innate and adaptive immune responses. Ubiquitin-mediated control over these processes can be reversed by cellular deubiquitinating enzymes (DUBs), which remove ubiquitin from cellular targets and depolymerize polyubiquitin chains. The importance of protein ubiquitination to host immunity has been underscored by the discovery of viruses that encode proteases with deubiquitinating activity, many of which have been demonstrated to actively corrupt cellular ubiquitin-dependent processes to suppress innate antiviral responses and promote viral replication.
View Article and Find Full Text PDFThe recent Middle East respiratory syndrome coronavirus (MERS-CoV), Ebola and Zika virus outbreaks exemplify the continued threat of (re-)emerging viruses to human health, and our inability to rapidly develop effective therapeutic countermeasures. Many viruses, including MERS-CoV and the Crimean-Congo hemorrhagic fever virus (CCHFV) encode deubiquitinating (DUB) enzymes that are critical for viral replication and pathogenicity. They bind and remove ubiquitin (Ub) and interferon stimulated gene 15 (ISG15) from cellular proteins to suppress host antiviral innate immune responses.
View Article and Find Full Text PDFNagZ is an N-acetyl-β-d-glucosaminidase that participates in the peptidoglycan (PG) recycling pathway of Gram-negative bacteria by removing N-acetyl-glucosamine (GlcNAc) from PG fragments that have been excised from the cell wall during growth. The 1,6-anhydromuramoyl-peptide products generated by NagZ activate β-lactam resistance in many Gram-negative bacteria by inducing the expression of AmpC β-lactamase. Blocking NagZ activity can thereby suppress β-lactam antibiotic resistance in these bacteria.
View Article and Find Full Text PDFObjectives: To evaluate the interconnection between peptidoglycan (PG) recycling, fosfomycin susceptibility and synergy between fosfomycin and β-lactams in Pseudomonas aeruginosa METHODS: Fosfomycin MICs were determined by broth microdilution and Etest for a panel of 47 PAO1 mutants defective in several components of PG recycling and/or AmpC induction pathways. PAO1 fosfomycin MICs were also determined in the presence of a 5 mM concentration of the NagZ inhibitor PUGNAc. Population analysis of fosfomycin susceptibility and characterization of the resistant mutants that emerged was also performed for selected strains.
View Article and Find Full Text PDFInducible AmpC β-lactamases deactivate a broad-spectrum of β-lactam antibiotics and afford antibiotic resistance in many Gram-negative bacteria. The disturbance of peptidoglycan recycling caused by β-lactam antibiotics leads to accumulation of GlcNAc-1,6-anhydroMurNAc-peptides, which are transported by AmpG to the cytoplasm where they are processed into AmpC inducers. AmpG transporters are poorly understood; however, their loss restores susceptibility toward β-lactam antibiotics, highlighting AmpG as a potential target for resistance-attenuating therapeutics.
View Article and Find Full Text PDFGM2 gangliosidosis is a group of neurodegenerative diseases caused by β-hexosaminidase A (HexA) enzyme deficiency. There is currently no cure. HexA is composed of two similar, nonidentical subunits, α and β, which must interact with the GM2 activator protein (GM2AP), a substrate-specific cofactor, to hydrolyze GM2 ganglioside.
View Article and Find Full Text PDFGM2 gangliosidosis is a family of three genetic neurodegenerative disorders caused by the accumulation of GM2 ganglioside (GM2) in neuronal tissue. Two of these are due to the deficiency of the heterodimeric (α-β), "A" isoenzyme of lysosomal β-hexosaminidase (HexA). Mutations in the α-subunit (encoded by HEXA) lead to Tay-Sachs disease (TSD), whereas mutations in the β-subunit (encoded by HEXB) lead to Sandhoff disease (SD).
View Article and Find Full Text PDFTay-Sachs or Sandhoff disease result from mutations in either the evolutionarily related HEXA or HEXB genes encoding respectively, the α- or β-subunits of β-hexosaminidase A (HexA). Of the three Hex isozymes, only HexA can interact with its cofactor, the GM2 activator protein (GM2AP), and hydrolyze GM2 ganglioside. A major impediment to establishing gene or enzyme replacement therapy based on HexA is the need to synthesize both subunits.
View Article and Find Full Text PDFFlgJ is a glycoside hydrolase (GH) enzyme belonging to the Carbohydrate Active enZyme (CAZy) family GH73. It facilitates passage of the bacterial flagellum through the peptidoglycan (PG) layer by cleaving the β-1,4 glycosidic bond between N-acetylglucosamine and N-acetylmuramic acid sugars that comprise the glycan strands of PG. Here we describe the crystal structure of the GH domain of FlgJ from bacterial pathogen Salmonella typhimurium (StFlgJ).
View Article and Find Full Text PDF